
Week 6; (if time) geometry of curves Math 2240, Spring '24
Problem. 1. When is the sum of indicators 1A and 1B an indicator function?

The product? Di�erence? In each case, for what sets?

Problem. 2. Let f : R → R monotone and a < b. Show that g(x) = 1[a,b](x)f(x)

is integrable (note f is not required to be continuous).

Problem. 3. Give an example of a sequence of functions {fn}n∈N of functions

fn : Rn → R and a function f : Rn → R such that

� fn is integrable for each n

� limn fn(x) = f(x) for all x ∈ Rk

� f is not integrable

Problem. 4. If f : R → R and g : R → R are Riemann integrable, is f ◦ g

Riemann integrable?



Geometry of Curves

For now, we'll say a curve is the image of a smooth function α : [0, 1] → R3. A

curve is regular if α′(t) ̸= 0 for all t ∈ R. If α′(t) = 0 at some point, then we won't

have a good way to de�ne a tangent line.

Problem. 1. Using the language of manifolds, describe the tangent line of p =

α(t0) for t0 ∈ [0, 1] using α′(t0). Discuss why α′(t0) = 0 gives problems.

The arc length of a regular parametrized curve α : I → R3 starting from t0 is

de�ned to be

s(t) =

ˆ t

t0

∥α(s)∥ds

where ∥α(t)∥ =
√
x′(t)2 + y′(t)2 + z′(t)2 is the length of the vector α′(t).

Problem. 2. A circular disc of radius 1 in the xy plane rolls without slipping

along the x axis. The �gure traced out by a �xed point on the circumference of

the disk is called a cycloid.

� Obtain a parametrized curve α : R → R2 the trace of which is the cycloid,

and determine its singular points (t ∈ R where α′(t) = 0).

� Compute the arc length of the cycloid corresponding to a complete rotation

of the disk.

A curve is parametrized by arc-length if ∥α′(t)∥ = 1 for all t ∈ I (why?). If α is

a curve parametrized by arc length, then the number ∥α′(s)∥ = k(s) is called the

curvature of α at s.

Problem. 3. Show the curvature of a parametrized straight line is zero every-

where. Conversely, given α : I → R3 show that if k(s) = ∥α′(s)∥ = 0 for all s, then

α is a parametrization of a straight line.

If k(s) ̸= 0, then we can write α′′(s) = n(s)k(s), where n(s) is a unit vector in

the direction of α′′(s). Just like we don't want to deal with α′(s) = 0, we also don't

want to deal with α′′(s) = 0, since then we don't have a well-de�ned normal vector

to our curve at s; from now on, we consider α to be at least twice continuously

di�erentiable.

Problem. 4. Show that α′′(s) is orthogonal to α′(s). (in this way, n(s) is called

the normal vector of α at s)

We can just as well write α′(s) = t(s) since α′(s) is a unit vector, and we call

t(s) the unit tangent vector to α at s. From this, we have t′(s) = k(s)n(s). From

t(s) and n(s), we can form a new vector b(s) = t(s)× n(s) called the binormal of

α at s. b′(s) measures the amount the plane spanned by the vectors {t(s), n(s)}, is
changing from point to point. Aptly, ∥b′(s)∥ = τ(s) is called the torsion of α at s.



Problem. Show that b′(s) is normal to t(s). Deduce that b′(s) = τ(s)n(s) for

some function τ . What does the sign of τ(s) represent?

We could try to now compute n′(s), like we've done for b(s) and t(s), but we

wouldn't �nd any new vectors this time:

Problem. Compute n′(s) and express it in terms of τ, b, k, t.

Remark. From the above work, we now have a set of di�erential equations de-

scribing our curve:

t′ = kn

n′ = −kt− τb

b′ = τn

These are called the Frenet formulas. The t − n plane is called the osculating

plane, and the n− b plane is called the normal plane. The inverse R = 1/k of the

curvature is called the radius of curvature at s.

From these di�erential equations, we can say that if you hand someone k(s)

and τ(s), we can construct a curve through a point p ∈ R3 such that α(s0) = p

and the curvature and torsion of α agree with k and τ .

Problem. Lets look at a circle in R3 centered at the origin contained in the xy

plane.

� Find an arc-length parametrization of the circle.

� Calculate t(s) and n(s), and draw the binormal b(s) for some points on the

circle

� Calculate b′(s).

� Show that any curve in R3 which is fully contained in the xy plane has zero

torsion.

Now consider a helix, parametrized by α(s) = (a cos s
c , a sin

s
c , b

s
c ), s ∈ R, where

c2 = a2 + b2.

� Show that s represents arc-length starting at t = 0, i.e., s =
´ s
0 |α′(t)|dt.

� Determine the curvature and torsion of α.

� Describe the osculating plane of α and how it changes from point to point.

� Show that the lines of R3 containing n(s) (right now, this is a vector "rooted"

at α(s)) and passing through α(s) meet the z-axis under a constant angle of

π/2.

� (extra) Construct the normal bundle T⊥M where M = im(α|(0,c)). For a

given point p ∈ M , attach an ε neighborhood of (p, 0) ∈ T⊥M given by the

subspace topology of R3×3. Draw a representation of this ε neighborhood in

R3.



� Now do this for every p ∈ M , and look at the union of all such ε

neighborhoods. What geometric object pops out?

� Does the picture for the union of ε neighborhoods of TM look di�erent?

Problem. Show that the torsion τ of a curve α is given by

τ(s) = −(α′(s)× α′′(s)) · α′′′(s)

|k(s)|2

(so τ somehow is measuring "third order" e�ects of a curve, and k is measuring

"second order" e�ects).


