Week 6; (if time) geometry of curves Math 2240, Spring ’24

Problem. 1. When is the sum of indicators 14 and 1g an indicator function?

The product? Difference? In each case, for what sets?

Problem. 2. Let f: R — R monotone and a < b. Show that g(z) = 1j,(z) f(7)
is integrable (note f is not required to be continuous).

Problem. 3. Give an example of a sequence of functions {f,}nen of functions
frn:R” - R and a function f: R™ — R such that

e f, is integrable for each n
e lim, f,(x) = f(x) for all x € R¥
e f is not integrable

Problem. 4. If f : R — R and ¢ : R — R are Riemann integrable, is fog
Riemann integrable?



Geometry of Curves

For now, we'll say a curve is the image of a smooth function a : [0,1] — R3. A
curve is regular if o/(t) # 0 for all t € R. If &/(t) = 0 at some point, then we won’t
have a good way to define a tangent line.

Problem. 1. Using the language of manifolds, describe the tangent line of p =
a(tg) for ty € [0,1] using o/(tp). Discuss why o/(tg) = 0 gives problems.

The arc length of a regular parametrized curve o : I — R3 starting from ¢, is

defined to be .

st) = [ lla(s)|ds

to

where [|a(t)| = /2'(£)2 + ¢/ (t)2 + 2/(t)? is the length of the vector /().

Problem. 2. A circular disc of radius 1 in the xy plane rolls without slipping
along the x axis. The figure traced out by a fixed point on the circumference of
the disk is called a cycloid.

e Obtain a parametrized curve a : R — R? the trace of which is the cycloid,
and determine its singular points (¢t € R where o/(t) = 0).

e Compute the arc length of the cycloid corresponding to a complete rotation
of the disk.

A curve is parametrized by arc-length if ||o/(¢)|| = 1 for all ¢ € I (why?). If v is
a curve parametrized by arc length, then the number ||o/(s)|| = k(s) is called the

curvature of o at s.

Problem. 3. Show the curvature of a parametrized straight line is zero every-
where. Conversely, given o : I — R3 show that if k(s) = ||/(s)|| = 0 for all s, then

« is a parametrization of a straight line.

If k(s) # 0, then we can write o’(s) = n(s)k(s), where n(s) is a unit vector in
the direction of o’(s). Just like we don’t want to deal with o/(s) = 0, we also don’t
want to deal with o(s) = 0, since then we don’t have a well-defined normal vector
to our curve at s; from now on, we consider « to be at least twice continuously
differentiable.

Problem. 4. Show that o(s) is orthogonal to /(s). (in this way, n(s) is called
the normal vector of « at s)

We can just as well write o/(s) = t(s) since o/(s) is a unit vector, and we call
t(s) the unit tangent vector to a at s. From this, we have t'(s) = k(s)n(s). From
t(s) and n(s), we can form a new vector b(s) = t(s) x n(s) called the binormal of
a at s. V/(s) measures the amount the plane spanned by the vectors {t(s),n(s)}, is
changing from point to point. Aptly, ||b'(s)|| = 7(s) is called the torsion of « at s.



Problem. Show that b/(s) is normal to t(s). Deduce that b'(s) = 7(s)n(s) for
some function 7. What does the sign of 7(s) represent?

We could try to now compute n/(s), like we've done for b(s) and ¢(s), but we

wouldn’t find any new vectors this time:
Problem. Compute n/(s) and express it in terms of 7,0, k, t.

Remark. From the above work, we now have a set of differential equations de-

scribing our curve:

t'=kn
n' = —kt —71b
b =mn

These are called the Frenet formulas. The t — n plane is called the osculating
plane, and the n — b plane is called the normal plane. The inverse R = 1/k of the
curvature is called the radius of curvature at s.

From these differential equations, we can say that if you hand someone k(s)
and 7(s), we can construct a curve through a point p € R3 such that a(sq) = p

and the curvature and torsion of o agree with k and 7.

Problem. Lets look at a circle in R3 centered at the origin contained in the xy

plane.

e Find an arc-length parametrization of the circle.
e Calculate #(s) and n(s), and draw the binormal b(s) for some points on the
circle

e Calculate V'(s).

e Show that any curve in R? which is fully contained in the xy plane has zero

torsion.
Now consider a heliz, parametrized by a(s) = (acos 2,asin 2,b%), s € R, where
A =a®+ b

e Show that s represents arc-length starting at t =0, i.e., s = [ |o/(t)|dt.

e Determine the curvature and torsion of a.

e Describe the osculating plane of o and how it changes from point to point.

e Show that the lines of R? containing n(s) (right now, this is a vector "rooted"
at a(s)) and passing through «(s) meet the z-axis under a constant angle of
/2.

e (extra) Construct the normal bundle T+M where M = im(al,)). For a
given point p € M, attach an ¢ neighborhood of (p,0) € T+ M given by the
subspace topology of R3*3. Draw a representation of this e neighborhood in
R3.



— Now do this for every p € M, and look at the union of all such ¢
neighborhoods. What geometric object pops out?
— Does the picture for the union of € neighborhoods of T'M look different?

Problem. Show that the torsion 7 of a curve « is given by

 (al(s) x () - o(s)
Tle) = COE

(so 7 somehow is measuring "third order" effects of a curve, and k is measuring

"second order" effects).



