Week 5; Constrained Optimization, SVD... Math 2240, Spring 24

1. The Rayleigh Quotient

Given a square matrix A, define Ry : R — R by

A
EE

Ry(x)

A surprising fact is that R4 takes its critical values at the eigenvalues of A, and
that the critical values are precisely the eigenvalues of A.

1. Argue that if x # 0 is a critical point of R4, then so is Az for any A € R, and
that R, is constant on lines through the origin: Rs(A\x) = Ra(x)

2. Before finding the extrema, argue topologically that R4 attains a maximum
and minimum on R™.

3. Restrict your attention to R4 : S" ! — R. Find 2* = argmax,cgn-1Ra(z).

4. Show that x* is the eigenvector of A corresponding to the largest eigenvalue,
and that this eigenvalue is maz, crn Ra ().

2. SVD, but "by hand"

Let A : R™ — R" a matrix, and A7 : R® — R™ its transpose. We know that if
A were square, we could apply the spectral theorem to get an orthonormal basis
organized into a matrix U such that A = UTAU for A diagonal. We’re hoping to
extend this result.

e Show AAT : R® — R” and ATA : R™ — R™ are symmetric.

« Using spectral theorem, choose an orthonormal basis for R on which AT A
is diagonal (with possible zeros). Can the eigenvalues be negative?

« Find an orthonormal basis for ker(A)* = im(AT) such that R™ = im(AT) @
ker(A) = A® B (hint: show that ker(AT A) = ker(A)).

 Find an orthonormal basis for R" = im(A) @ ker(AT) = C @ D such that
A: B — D and AT : D — B are each the zero map, and A : A — B is

invertible. (hint: if AT Ag; = s?¢;, do the vectors Ag; form a nice basis for
R™? What about ker(AT)?)

The s; determined above are called the singular values of A, the ¢; are right singular

vectors, and p; are left singular vectors.



3. Another Rayleigh Quotient

The Rayleigh quotient can be generalized to non-square matrices. If A : R™ — R™,
then now define R4 : R" x R™ — R by
y - Ax

Raly,z) = 75—
@) = JoTel

e Argue that, if we want to find the x,y which maximize R4, it suffices to
consider Ry : 8"~ x §™~! — R, and that from this we already know Ry

attains a maximum and minimum.

« Express the manifold S~ x §™! as a regular value of some function F :
R" x R™ — R2.

 Show that max,cgn-1 ycgm-1 R(y, ) is attained by the singular values of A.
Are the (z*,y*) at which these are obtained the vectors we saw in (3.)? Are

they uniquely determined?

4. Another Minimization Problem

Consider a linear system Ax = v where A € R™"*™. This has a solution if and
only if v € im(A), which could be the case if A isn’t onto. What we’d like is an
approximate solution, Az = 0, where 0 is the unique vector in im(A) that is closest

to v, i.e., the unique solution to the problem

min |lv—0|?= min |Az—v|?
veim(A) z€dom(A)
Such a problem is called a least-squares problem, or a minimum norm problem
when || - || is defined differently from ||z|? = Y, 27.

o Suppose we found ¥ € im(A) which minimizes the above norm. Show that if
x,y € dom(A) solve the above problem, then z — y € ker(A).

o Argue that the set of all least squares solutions is x + ker(A), where z is a
particular solution.

o Of physical importance is the y € 2 +ker(A) for which ||y||? is smallest. Show
that if y is the least-squares solution in dom(A), then it is the unique vector
in dom(A) with this property

o Remember that v — v L im(A) by the projection property: the nearest
vector ¥ to v is that which has orthogonal error. Using this, show that
(AT A)~tATy € dom(A) is the minimum norm least-squares solution.



5. Prep for Integration: Infinite sums?

For an arbitrary set X C RT, define the sum Y,y = by

Z x = sup{z x : AC X where |A| finite}

reX T€A

Show that if X is uncountable, then ) .y = oco. (hint: consider the sets
Ay ={x e X :2>1/n})

So defining integration by "counting points in X" is doomed to fail — there’s too

much to count!



