
Week 4; Dual spaces, gradients. . . Math 2240, Spring ’24
Now that we’ve seen a dual space to a vector space, V ∗ = Lin(V,R), we can
introduce the gradient of a function f : Rn → R: The gradient of a real-valued
function f at a point p is defined as the unique vector ∇f(p) for which

∇f(p) · v = Df(p)(v) for all v ∈ Rn

All the work is coming from the dot product. Without it, there isn’t a basis-free
way to relate Df(p) to a unique vector with a consistent action on all other v.

1. Some quick facts about duals

Let V be an n dimensional vector space, and V ∗ its dual.

• Show that dim(V ∗) = dim(V )

Let ⟨, ⟩ be an inner product for V and W (notation suppressed).

• Suppose {vi}n
i=1 an orthonormal basis for V , and {wi}m

i=1 an orthonormal
basis for W , and L : V → W is a linear transformation. Show that if the
matrix of L with respect to the basis {vi} and {wi} is Mji, then the matrix
of L∗, M∗

ji, related to Mji as M∗
ji = Mij . (i.e., the matrix of the adjoint of a

linear transformation is just the transpose of the original matrix).
• ("Riesz Representation") Show that, for a finite-dimensional inner-product

space V , V ∼= V ∗ in the sense that for all ϕ ∈ V ∗, there exists a unique
vϕ ∈ V such that ϕ(w) = vϕ · w. (can you do it without using a basis? This
fact is also true for infinite-dimensional inner-product spaces)

2. Gradients

Now that we know that vectors and functionals are interchangeable through the
inner product, its easier to see that if f : Rn → R, Df(p) and ∇f(p) are related
by the natural isomorphism between Rn and (Rn)∗.

In the following, suppose that Suppose M = f−1(0), where 0 is a regular value of
f : Rn → R, (M is an n − 1 dimensional manifold in Rn).

• If f : R2 → R is given by f(x, y) = x2/a + y2/b, sketch the level curves of f

for some values of a and b. Calculate ∇f(x, y) and graph these vectors atop
the level curves.
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• In a first multi course, you may have heard that "∇f is orthogonal to the level
curves of f ." Give meaning to this statement in the language of manifolds.

3. The Tangent Bundle is a Manifold

We saw briefly in class that TM := {(p, v) : p ∈ M, v ∈ TpM}. Here we’ll show
that this is also a manifold if M is a manifold.

• Suppose that f : Rn → Rn−k and that M = f−1(0) where 0 a regular value.
Using f , construct a new map F : R2n → R2n−2k such that F −1(0) = TM

(Hint: the first n − k components should probably be related to f . The
remaining n − k components need to somehow encode the fact that if v ∈
TpM ⊆ Rn, then v ∈ Ker(Df(p)).

5. A Manifold with Unusual Tangent Spaces

Denote ∆d−1
+ := {x ∈ Rd : ∑d

i=1 xi = 1, xi > 0 ∀i ∈ {1, . . . , d}}.

• Draw ∆1
+ and ∆2

+.

If you squint hard enough, this can be a representation of a probability distribution
on d objects, where P (X = i) = xi. Each point in ∆d−1

+ describes a different
distribution.

• Preliminary: Suppose U ⊆ M is an open subset of a submanifold of Rn (i.e.,
open in the subspace topology of M). Argue that U is also a submanifold of
Rn.

• Argue that ∆d−1
+ is a d − 1 dimensional manifold in Rd.

• For p ∈ ∆d−1
+ , describe Tp∆d−1

+ . (Hint: Its probably easiest to find a function
for which U ∩ ∆d−1

+ = f−1(1) and describe ker(Df(p)).

6. Tangent Spaces and some Derived Objects

We saw that TpM is a k dimensional vector space in Rn if M is a k dimensional
manifold

• What is the dimension of (TpM)∗? What about (TpM)⊥?
• If M = f−1(0), we saw that TpM = kerDf(p). What is the relationship

between (TpM)⊥ and Df(p)? What about ∇f(p)?
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7. Some Funnier Bundles

Let M a manifold in Rn as usual.

• Denote T ∗M = {(p, ϕ) ∈ R2n : p ∈ M, ϕ ∈ (TpM)∗}. Is T ∗M a manifold?
And of what dimension?

• Denote T ⊥M = {(p, w) ∈ R2n : p ∈ M, w ∈ (TpM)⊥}. Is T ⊥M a manifold?
And of what dimension?

• Denote UM = {(p, u) ∈ R2n : p ∈ M, u ∈ Rn ∥u∥ = 1}. Whats the
dimension of UM?

8. Vector Fields?

Now that we know TM is a manifold, we can consider functions X : M → TM to
be C1 if it plays well with differentiable structures on TM and M . Likewise for
ω : M → T ∗M . Such a function X is called a vector field, and ω a covector field.

• Show that ∇f can be considered a vector field on Rn

• Show that Df can be considered a covector field on Rn
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