Week 3 (2024-02-07)

The inverse and implicit function theorems are building blocks for local statements. They roughly say: If you have a map, and at some point its derivative satisfies some linear algebra property, the map itself satisfies that property on a neighborhood. Since linear algebra is easy, this makes local statements easy if our map is wellbehaved.

For example: if you have a C^1 function $f : \mathbb{R}^n \to \mathbb{R}^n$, and at a point $p \in \mathbb{R}^n$ there exists neighborhoods of p and $f(p), U, V \subseteq \mathbb{R}^n$, such that $f|_U : U \to V$ is one-to-one and onto and has a differentiable inverse, then Df(p) is an isomorphism.

What if we go the other way: suppose Df(p) is an isomorphism. Can we find a differentiable inverse to f? Amazingly, the answer is yes, so long as we force Df(p) to be C^1 .

Now suppose you have a map $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$, such that DF(p) is onto at some point. Then in linear algebra terms, we have a freedom to choose arbitrary values of the *k* coordinates which are in the kernel of DF(p). The rest are then determined by DF(p) (think back to linear algebra, if you have Az = y, then each element in ker *A* determines a new solution z' + x where $z' \in (ker A)^{\perp}$). Also amazingly, this implies we can find a function $g(p_1, \dots, p_k) = (p_{k+1}, \dots, p_n)$ such that F(x, g(x)) = p in a neighborhood of *x*.

1. How do things go wrong $(\mathbb{R} \to S^1)$

Let $f : \mathbb{R} \to S^1$ be given by $f(x) = x \mod 2\pi$.

- Take p = 0. Find a neighborhood (open set containing 0) such that $f|_U : U \to f(U)$ is one-to-one and onto.
- Take p = 0 again. Find a neighborhood U such that $f|_U$ is not one-to-one.
- Can you find a U such that $f|_U$ isn't onto, but also isn't one-to-one?

2. A locally but not globally one-to-one function

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x^2 - y^2, 2xy)$$

- 1. Show that f is one-to-one on the set $A = \{(x, y) : x > 0\}$. (if f(x, y) = f(a, b), then ||f(x, y)|| = ||f(a, b)||).
- 2. What is B = f(A)?
- 3. If g is the inverse function of f, find Dg(0,1).

3. Making Manifolds

Let $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$ be differentiable, and 0 a regular value. Using the inverse ==function theorem, prove that $F^{-1}(0)$ is a manifold.

4. Inverse \Rightarrow Implicit

Assume inverse function theorem to be true. Prove the implicit function theorem. (Hint: You're given $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$. Look at "graphs of F" where you only choose a subset of the coordinates. Somewhere you need a full-rank matrix, and the only way to make it is with F and the coordinates given).

5. Even nearby points have solutions

Let $f : \mathbb{R}^n \to \mathbb{R}^{n-k}$ be C^1 , and suppose f(a) = 0 and Df(a) is onto. Show that if c is close enough to 0 (quantify?), then f(x) = c has a solution.

6. Non-regular doesn't mean non-manifold

Let $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$ have a regular value at 0. Show that $G(x) = F(x)^2$ doesn't have 0 as a regular value, yet $G^{-1}(0)$ is a manifold.

7. (HH 2.10.5)

- 1. Directly (without implicit fn thm) find where $y^2 + y + 3x + 1 = 0$ defines y implicitly as a function of x
- 2. Check this agrees with implicit fn thm
- 3. In what neighborhood of $x = -\frac{1}{2}$ are we guaranteed an implicit function g(x) with $g(-\frac{1}{2}) = \frac{\sqrt{3}-1}{2}$?
- 4. In what neighborhood of $x = -\frac{13}{4}$ are we guaranteed an implicit function g(x) with $g(-\frac{13}{4}) = \frac{5}{2}$?

8. The form of Dg for implicit function g

Suppose f(x, y) = 0 and there exists a g such that g(x) = y and f(x, g(x)) = 0 in a neighborhood of x. Find Dg in terms of Df.