
Spring 2024, 2240 Problem Sheet (Second Half)
Many of these problems are not original: They come variously from our course

textbook Hubbard & Hubbard, Munkres's �Analysis on Manifolds,� do Carmo's �Dif-

ferential Forms and Applications,� Flanders's �Di�erential Forms with Applications

to the Physical Sciences,� and Sjamaar's manifolds notes �Manifolds and Di�erential

Forms,� and my predecessor TA's for this course.

Many of these problems are calculations, especially once we get to di�erential forms.

This is on purpose: much of the power of forms lies in their ability to calculate quan-

tities with a physical meaning, but in a completely �automatic� way. Much of the

rules of forms (antisymmetry, multilinearity) and their interactions with di�erentiable

functions (pullbacks) are de�ned for the express purpose of convenient calculations re-

lating to volumes. These problems are meant to highlight their power in 1. computing

things we already know, in a more �natural� way, and 2. computing things we need,

which would have been di�cult to even write down without forms (like the infamous

�angle form�, or the general Stokes' theorem).

Problem 1. Let a ∈ Rn and de�ne φa(v, w) = det[a v w]. Show φa is a 2 form, and

express it as a linear combination of 2 form basis elements.

Problem 2. 1. Show ω ∧ β = (−1)klβ ∧ ω if ω ∈ Λk and β ∈ Λl.

2. If φ is any k form on R3, show φ ∧ φ = 0. What about k > 3?

3. Does the previous part generalize to forms on Rn? That is, given n > 0, φ a k

form on Rn, is φ ∧ φ = 0?

Problem 3. Fix x0 ∈ Rn and {x1, · · · , xk} linearly independent withM = span({xi}.
De�ne

G = [x1, · · · , xk]T [x1, · · · , xk],

and

G∗ = [x0, x1, · · · , xk]T [x0, x1, · · · , xk].

De�ne d(x,M) = infy∈M d(x, y). Show

d(x0,M)2 =
detG∗

detG

(Hint: look for an x such that ‖Ax− x0‖2 minimized for a suitable A).

Problem 4. In a usual analysis class, you start with the de�nition of measurable,

and then build the theory of integration from there. In this class, we constructed

the Lebesgue integral as a sort of �completion� of the Riemann integral. Given the

Lebesgue integral, we can actually narrow down what the measurable sets should be.

If A ⊂ Rn is bounded, we say A is Lebesgue Measurable if 1A is L-integrable. We

de�ne

m(A) =

ˆ
1A|dxn|

.

If A ⊂ Rn is unbounded, we say A is Lebesgue Measurable if 1A∩BR(0) is L-integrable

for all R > 0 (heuristic: �measurable if any bounded subset of it is measurable�). We

de�ne

m(A) = sup
R>0

m(A ∩BR(0)).

Show:



1. A complement of a measurable set is measurable

2. A countable union of measurable sets is measurable

3. If A,B disjoint and measurable, then m(A ∪B) = m(A) +m(B)

4. If {Ai} is a countable collection of disjoint measurable subsets, then m(∪iAi) =∑
im(Ai).

5. If D ⊂ A, and m(A) = 0, then D is measurable and m(D) = 0.

Problem 5. If φ is a 1-form, and ψ is a 3-form, write φ ∧ ψ(v1, v2, v3, v4 in terms of

φ and ψ.

Now let φ a 2-form and ψ a 2-form. What's φ ∧ ψ?

Problem 6. If F : Rn → Rn is a vector �eld, de�ne

φF (v1, · · · vn−1)(x) = det[F (x), v1, · · · , vn−1].

Write φF in the basis dxi1 ∧ · · · ∧ dxin−1
.

Problem 7. Set ω = −y
x2+y2 dx + x

x2+y2 dy a 1 form on Rn \ {0}. Let's restrict it to

U = {r > 0, 0 < θ < 2π} . De�ne

f(r, θ) =

{
x = r cos θ

y = r sin θ

(so f : R2 \ {0} → R2 \ {0}). Compute f∗ω on U .

Problem 8. Prove that a bilinear φ : R3 × R3 → R is alternating if and only if

φ(v, v) = 0 for all v.

Problem 9. Show if i1 < · · · < ik, j1 < · · · < jk, then

(dxi1 ∧ · · · ∧ dxik
)(ej1 , · · · , ejk) =

{
1 if i1 = j1, i2 = j2, · · · , ik = jk

0 else.

Problem 10. Let φ = xdx − ydy, ψ = zdx ∧ dy + xdy ∧ dz , θ = zdy. Compute

φ ∧ ψ, θ ∧ φ ∧ ψ.

Problem 11. If f : Rn → Rm is di�erentiable, and ω a k form on Rm with k > m,

show f∗ω = 0

Problem 12. Let ω = dx1∧dx2+ · · ·+dx2n−1∧dx2n. Compute ω∧ω∧· · ·∧ω ≡ ω∧n.

Problem 13. Let f : Rn → Rm di�erentiable, and ω = dy1 ∧ dym. Show f∗ω =

det(dfp)dx1 ∧ · · · ∧ dxn.

Problem 14. Let S3 ⊂ R4 be the unit sphere. Show

1. sign(dx1 ∧ dx3 ∧ dx4) is not an orientation

2. Ωx(v1, v2, v3) = sign det[x, v1, v2, v3] is an orientation

Problem 15. De�ne S = {p = (x, y, z) |x2 + y3 + z4 = 1}. Put an orientation on it.

Problem 16. Let F : R3 → R3. De�ne ΦF (v, w) = det(F (x), v, w) (�Flux�), WF (v) =

F (x) · v (�Work�), Mgx(v1, v2, v3) = g(x)dx1 ∧ dx2 ∧ dx3(v1, v2, v3) (�Mass�). Show

ΦF×G = WF ∧WG

and

MF×G = WF ∧ ΦG = ΦF ∧WG

where × is the usual cross-product.



Problem 17. Given T = {z2−(2−
√
x2 + y2)2 = 1 a torus in R3, de�ne ω = ez

2

dx∧dy.
Compute

´
T
ω.

Problem 18. Find all q forms ω = ρ(y, z)dx+ q(x, z)dy such that

dω = xdy ∧ dz + ydx ∧ dz

Problem 19. Let R : Rn → Rn be a radial vector �eld on Rn. Show dΦR(x)(v) =

n(x) · v where n(x) is the unit radial vector at x.

Problem 20. If f is a 1 form on Rn, then show f(y) = v · y for some v ∈ Rn.

If T : Rm → Rn, then from the linear algebra section we can represent T (v) = Bv

through a matrix B. What is the matrix of T ∗f?

Problem 21. Let {ai} be a list of rational numbers in [0, 1].

1. Show f(x) =
∑∞

k=1 2−k 1√
|x−ak|

is Lebesgue integrable

2. Show f(x) converges for almost every x.

3. Find a particular x for which it converges.

Problem 22. (harder) Let N ⊂ Rn be a compact orientable k-dimensional manifold

with boundary, and give its boundary the induced orientation.

1. Suppose ∂N = M1 ∪ M2, where Mi are disjoint compact k − 1 dimensional

manifolds without boundary (with one or both non-empty). Show that any k−1

form ω such that dω = 0, we have that

ˆ
M1

ω =

ˆ
M2

ω

2. If ∂N = ∅, then show for any k form η such that there exists a k−1 form ω with

dω = η, we have ˆ
N

ω = 0

Problem 23. Suppose ω is an n−1 form on Rn\{0} such that dω = 0 and
´
Sn−1 ω 6= 0.

Show that ω cannot be exact.

Problem 24. Let M be a k+ l+ 1 dimensional manifold without boundary, and ω a

k-form, η an l-form, de�ned on U ⊇M open. Show that

ˆ
M

ω ∧ dη = a

ˆ
M

dω ∧ η.

Determine the scalar a.


