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1 Scale Decompositions for EQFT
The goal of this note is to clearly demonstrate the similarities between two different scale
decompositions of the Gaussian Free Field that appear in recent works on Euclidean quantum
field theory (see references). There’s also lots of missing 2π’s—please forgive me.

Brief motivating example: infinite-dimensional Gibbs measures
Formally, the ϕ4

d measure on the torus Td is a Gibbs measure

dµ = 1
Z

e−H(ϕ)
∏

x∈Td

dϕx (1.1)

with
H(ϕ) =

ˆ
Td

ϕ4dx +
ˆ
Td

|∇ϕ|2 + ϕ2dx

Of course, this doesn’t make any sense. The worst offender is the non-existent infinite-
dimensional Lebesgue measure Πx∈Tddϕx, where a Lebesgue measure is somehow attached to
each point on the torus. To handle this problem, we can group the “Lebesgue” measure with
the the quadratic terms of H, leaving V (ϕ) =

´
Td ϕ4dx, and

dµ = 1
Z

e−V (ϕ)dθ(ϕ)

where θ is the law of a GFF (to be described), and (formally) Z =
´

e−V (ϕ)dθ(ϕ).
The point: a very convenient way to construct the measure (1.1) is to write down explicitly

a GFF with Law(X) = θ and then try to understand expectations with respect to X tilted by
e−V , ˆ

fdµ = 1
Z
E[f(X)e−V (X)].

A (very effective) recent approach to compute expectations under this tilted measure is
to represent these expectations as minimizers of a related stochastic control problem (first
implemented in [1], followed by [3] [4] [13] and many more). For example, we can formally
compute the normalization constant Z = E[e−V (X)] by a formula of Boué and Dupuis [10]

− logE[e−V (X∞)] = inf
v
E[V (X∞ +

ˆ ∞

0
Qsvsds) + 1

2

ˆ ∞

0
∥vs∥L2ds] (1.2)

where Xt is a scale decomposition of X by Xt =
´ t

0 QsdYs (to be described; think of Xt =´ t

0 σsdBs in Rd), and vt is a stochastic process with values in H1(Td), called a “control”, that
is adapted to Xt. Modifications of this control problem can be used to compute E[f(X)e−V (X)]
for nice f (see [3], [2], [13] for this approach).

Independently, scale decompositions were used to explicitly construct the measure µ; this is
dubbed the “Polchinski flow” approach and has advantages and disadvantages when compared
with the control approach (although a comparison isn’t explicitly detailed in the literature, and
the two approaches aren’t mutually disjoint, see [4]). The first use of the Polchinski approach
was found through obtaining log-Sobolev constants of the sine-Gordon field with β < 6π [5] and
for ϕ4

2, ϕ4
3 by slightly different means but still with the Polchinski flow [8]. Further applications

followed in [7] [9] [6] [4] and probably more.
Hopefully this gives an indication that scale decompositions Xt of the GFF X have become

an important tool in Euclidean quantum field theory, which justifies the existence of this note.
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1.1 The Gaussian Free Field on T3

As promised, let’s try to group together the quadratic terms
´
T3 |∇ϕ|2 + ϕ2dx with

∏
x∈T3 dϕx.

Using the Fourier isometry, we see for ϕ nice enough,

exp
(

−
ˆ
T3

|∇ϕ|2 + ϕ2
)∏

x

dϕx∈T3 ≃ exp
(

−
∑

n∈Z3

(1 + |n|2)ϕ̂2(n)
) ∏

n∈Z3

dϕ̂n,

where ≃ is used since the left-hand side doesn’t make any sense. But the right-hand side
is formally the law of a sum of countably many independent Gaussians, each with variance
(1 + |n|2)−1.

Definition 1.1. A Gaussian Free Field X with mass m on the torus Td is a Gaussian process
with covariance given formally by

E[X(x)X(y)] = (m2 − ∆)−1(x − y). (1.3)

Defining something formally doesn’t seem helpful, but notice that

X(x) =
∑

n∈Zd

ei⟨n,x⟩(1 + |n|2)− 1
2 gn, (1.4)

where gn = 1√
2 (gn

1 + ign
2 ) are iid complex Gaussians with the constraint gn = g−n, is a GFF

with mass m = 1. Indeed, since E[gngm] = δm=−n,

E[X(x)X(y)] =
∑

n∈Zd

ei⟨n,x−y⟩(1 + |n|2)−1 = (1 − ∆)−1(x − y)

Remark 1.2. In d ≥ 2, X is almost surely not a function, so this really is a formal definition.
To get a feel for why this is the case, we can return to the previous argument and plug into the
Fourier expansion x = y. We then see (m2 − ∆)−1(0) = ∞ in d ≥ 2, so that E[X(x)2] = ∞ for
all x ∈ Td, which can’t be good.

2 Scale Decompositions
Definition 2.1. A scale decomposition of the GFF with mass m is a Gaussian stochastic process
Xt such that X∞ = X, E[Xt(x)Xt(y)] = Ct(x, y) is a positive-definite kernel, continuous in
time, and increasing to (m2 − ∆)−1(x − y) in the sense of positive linear operators.

The name of the game is to explicitly construct these scale decompositions. We can take a hint
from finite-dimensional Brownian motion; if Xt satisfies

Xt =
ˆ t

0
σsdBs

where σs is a positive definite matrix for each s, then {Xt(i)}n
i=1 is a Gaussian vector with

covariance E[Xt(i)Xt(j)] =
´ t

0
∑

k σs(i, k)σ(k, j)ds by the Itô isometry.

2.1 Cylindrical Brownian Motion
One way to construct white noise is to form the random Fourier series,

Wt =
∑
n∈Z

gnei⟨n,t⟩

where gn are iid complex Gaussians as before. Brownian motion is obtained by “integrating
white noise”,

Bt =
〈
W·, 1[0,t](·)

〉
L2(R) =

∑
n∈Z

gn
〈

ei⟨n,·⟩, 1[0,t](·)
〉

L2(R)
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Right now, Bt ∈ R for fixed t; we want a Gaussian process based on this construction with
values in Hα(Td) for some α ∈ R.

To (formally) evaluate white noise at a particular time, we plug t into the Fourier series. If
we make the Fourier series over Zd instead of Z, we would have a white noise in d dimensions.
Re-labeling t to x, this gives white noise in space:

W (x) =
∑

n∈Zd

gnei⟨n,x⟩.

Indeed, E[W (x)W (y)] =
∑

n∈Zd ei⟨n,x−y⟩ = δ(x − y), making W a random distribution on Td.
To make this process time-dependent, we can turn the complex Gaussians gn into complex
Brownian motions Bn

t with the same constraint Bn
t = B−n

t .

Yt(x) =
∑

n∈Zd

Bn
t ei⟨n,x⟩.

Definition 2.2. Yt as given above is called a cylindrical Brownian motion over {ei⟨n,x⟩}n∈Zd .

From here, dYt =
∑

n dBn
t ei⟨n,x⟩ plays the role of dBt in standard SDEs; the spatial dimensions

are thought of as fixed, so stochastic processes increments dYt have values in a function space,
and SDEs dXt = Ftdt + QtdYt formally represent the integral equation

Xt = X0 +
ˆ t

0
Fsds +

ˆ t

0
QsdYs (2.1)

but where
´

dt yields a function or distribution rather than a number, and Qt is a positive
linear operator rather than a matrix or number.
Remark 2.3. One massive challenge is introduced: while standard Brownian motion Bt has
values in R , the cylindrical Brownian motion Yt is distribution-valued: for fixed time, its spatial
covariance is t · δx−y ∈ H− d

2 −ϵ(Td). This makes the choice of spatial covariance Qt in front
of Yt very important in applications. For example, while Yt ∈ H− d

2 −ϵ(Td), if Q2
t = e−t(1−∆),

then Zt =
´ t

0 QtdYt ∈ Hk(Td) for all k (its Fourier coefficients decay exponentially fast almost
surely). This extra boost in regularity can make a big difference.
Example 2.4. To demonstrate the previous remark, suppose Ft(Xt) = MXt for some M ∈
H

d
2 (Td). If we call Zt =

´ t

0 Ft(Xt)dt =
´ t

0 M(Zs + Ys)ds, for (2.1) to be well-posed, we need
MYt be well-defined; this can only happen when their regularities add to something positive.
For Qs = 1, we’re out of luck: almost surely, their regularities sum to d

2 − d
2 − ϵ < 0. For

Q2
t = e−t(1−∆), we have a chance. Obviously, the solutions to the two different SDEs won’t

be the same, but the point is that it’s easier to get to the starting line with a covariance
decomposition.
Remark 2.5. One can also can use a basis free definition of a cylindrical Brownian motion
by asking for a mean-zero Gaussian stochastic process with the covariance E[Yt(x)Ys(y)] of Y
given above. From this definition there are many ways to construct a cylindrical Brownian
motion. The essential property of ei⟨n,x⟩ used above was that it forms an L2(Td) orthonormal
basis. Any other L2(Td) basis would have done the job, but one should choose a basis that
plays nicely with (∆ − m2)−1 or whichever covariance you have on hand (see section 3 for an
example).

2.2 Heat kernel decomposition
Proposition 2.6. If a Gaussian stochastic process Xt has covariance kernel

Ct =
ˆ t

0
es(∆−m2)ds

then Xt is a scale decomposition for the GFF with mass m, called the heat kernel scale
decomposition.
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Proof. We can write

Ct(x) =
ˆ t

0
es(∆−m2)(x)ds =

ˆ t

0

∑
n∈Zd

e−t(|n|2+1)einxds

Then

sup
x∈Td

|Ct+ϵ(x)−Ct−ϵ(x)| = |
ˆ t+ϵ

t−ϵ

∑
n∈Zd

e−s(|n|2+1)ds| ≤
∑

n∈Zd

1
|n|2 + 1e−t(|n|2+1)

∣∣∣eϵ(|n|2+1) − e−ϵ(|n|2+1)
∣∣∣

Everything on the right-hand side is summable and positive, and each term of the sum goes to
zero as ϵ → 0, so |Ct − Cs|∞ → 0 as |t − s| → 0. Given f ∈ L2(Td), we then have

∥Ctf − Csf∥H1(Td) ≤ |Ct − Cs|∞∥f∥H1(Td) → 0

since Ct and ∇ commute.

2.3 C∞
c decomposition

The essential property of the heat kernel et∆ is that it acts on Fourier coefficients through
multiplication by e−t|n|2 ; from this we see et∆f has exponentially decaying Fourier coefficients,
so it is smooth for any t > 0. A natural generalization is to construct a covariance decomposition
through Fourier multipliers Ĉt(n) such that Ĉt(n) → 1

(1+|n|2) , Ct is differentiable, and ̂̇Ct(n) ≥ 0
for all t. This would make

Ctf(x) :=
∑

n

ei⟨n,x⟩Ĉt(n)f̂(n)

a covariance decomposition to be used in a scale decomposition; the condition Ĉt(n) ≥ 0 ensures
we can take a square root, so setting

Qtf =
∑

n

ei⟨n,x⟩ ̂̇Ct(n)1/2f̂(n)

we can explicitly write
ˆ t

0
QsdYs =

∑
n∈Zd

ei⟨n,x⟩
ˆ t

0

̂̇Cs(n)1/2dBn
s

Definition 2.7. Let χ(x) be a smooth bump function supported on B(0, 1) with χ(0) = 1. Let
Ĉt(n) = χ2(n/t) so that Q̂t(n) =

√
d
dt χ2(n/t). A Gaussian stochastic process with covariance

kernel
Ct(x) =

ˆ t

0
Q2

sds =
∑

n

1
m2 + |n|2

ei⟨n,x⟩Ĉt(n)

is called a C∞
c (Td) scale decomposition of the GFF with mass m.

Proposition 2.8. With Qt as in the previous definition, the process

Xt =
ˆ t

0
QtdYt

is a C∞
c scale decomposition.

Proof. Since χ2(n/t) ≥ 0 and 1
1+|n|2 χ2(n/t) ↑ 1

1+|n|2 for each n, this follows from the Itô
isometry.
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3 Scale decompositions for a different L2 basis
Remember that we started with the potential H in (1.1), and grouped the gradient and square
term with the Lebesgue measure to form a GFF. Let’s consider a different energy H, this time
defined on L2(R) with values in C rather than L2(Td) with values in R,

H(ϕ) =
ˆ
R

|ϕ(x)|4dx +
ˆ
R

|∇ϕ(x)|2 + |x|2|ϕ(x)|2dx.

Our trick of absorbing the square terms into a Fourier decomposition isn’t going to work: since
the functions ϕ are defined over R, the Fourier series turns into the Fourier transform, and we
no longer have a simple decomposition by sums of iid Gaussians.

The problem is that the Fourier isometry doesn’t respect the operator ∆ − |x|2. We should
instead look for a basis of L2(R) composed of eigenfuctions of ∆−|x|2. In general, this is a fool’s
errand, but ∆ − |x|2 is very nice (compact resolvent, discrete spectrum), so we immediately
have an orthogonal decomposition of L2(R) by eigenfunctions {Hn, iHn} (these are the Hermite
polynomials, multiplied by e− x2

2 , which makes them a basis with respect to the Lebesgue
measure instead of the Gaussian measure, see [11] [12]). Immediately we can write down a
GFF-like field,

X(x) =
∑
n∈N

1
λn

gnHn(x)

where gn are iid complex standard Gaussians. This time, since λn =
√

2n + 1,

E[∥X∥2
2] =

∑
n∈N

1
λ2

n

∼
∞∑

n=1

1
n

which is a logarithmic divergence. So even in dimension d = 1 we need to renormalize small-scale
divergences (for the standard GFF, this only happened when d ≥ 2).

Anyway, from the {Hn, iHn} basis we can construct the cylindrical Brownian motion as
before,

Yt(x) =
∑
n∈N

Bn
t Hn(x).

where Bn
t are iid complex Brownian motions (hidden by Bn

t are the two basis elements Hn and
iHn). Then dYt is again a space-time white noise,

E[⟨dYt, f⟩ ⟨dYt, g⟩] = ⟨f, g⟩L2(R)

so we can write down SDEs,
dXt = Ftdt + CtdYt.

Now we can look for covariance decompositions that play nicely with the basis Hn. One option
is to use the C∞

c bump functions χ2
t :

Xt =
ˆ

QtdYt =
∑
n∈N

1
λ

1/2
n

Hn(x)
ˆ √

d

dt
χ2

t (n).dBn
t

Then
E[Xt(x)Xt(y)] →

∑
n

1
λn

Hn(x)Hn(y),

which is precisely (|x|2 − ∆)−1(x, y). We could also use the heat kernel decomposition

Ct =
ˆ t

0
es(−|x|2+∆)ds

where es(−|x|2+∆)f =
∑

n e−sλn ⟨f, Hn⟩L2(R) Hn.
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4 Brief Takeaway
So we’ve reduced the problem of understanding dµ = 1

Z e−H(ϕ)dϕ to understanding E[e−V (X∞)].
As Xt is a function of a cylindrical Brownian motion, we still have the Boué-Dupuis formula
(1.2) to understand exponential functionals E[e−F (Xt)], giving a starting point for defining the
partition function of the system. Alternatively, we could try the Polchinski flow approach.
Either way, we’re in a good spot to start doing work.
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