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Setup
In the following we consider a weak sub-solution u ∈ H1

0 (B1) of the PDE

Lu+ cu ≤ f

where
Lu =

∑
i,j

Di(aijDj).

In other words, for any non-negative ϕ ∈ H1
0 (B1),

ˆ
aijDiuDjϕ+ cuϕ ≤

ˆ
fϕ (1)

In the following, we assume {aij(x)}ij is bounded and satisfies an ellipticity condition,

aij(x)ξiξj ≥ λ|ξ|2 > 0,

and c, f ∈ Lq for q > n
2 . We also take Λ so that

|aij |∞ + ∥c∥q ≤ Λ.

Remark. The requirement that q > n
2 is a bare-minimum to guarantee the integrals

in 1 are finite. Indeed, by Hölder, setting q∗ = (1− 1
q )

−1

∥cuϕ∥ ≤ ∥c∥q∥uϕ∥q∗ ≤ ∥f∥q∥u∥2q∗∥ϕ∥2q∗

If we only know u, ϕ ∈ H1, we need 2q∗ = 2(1 − 1
q )

−1 < 2n
n−2 to make use of the

Sobolev inequality, or q > n
2 .

Theorem 1 (De Giorgi [1], Nash [4], Moser [3]). With the above conditions,
assume u satisfies the above weak form. Write u+ as the positive part of u. Then
for some constant C depending only on n, λ,Λ, p,

sup
Bθ

u+ ≤ C(n, λ,Λ, p)

{
1

(1− θ)n/p
∥u∥Lp(B1) + ∥f∥q

}
.

This note will sketch the proof of this classical result for the case p = 2, θ = 1/2 using
Moser’s and De Giorgi’s methods. For the extension to all p ∈ (0,∞) and θ ∈ (0, 1),
and for many more (important and instructive) details, see section 4 of [2].

Moser’s Approach
The Homogeneous Case
Let’s simplify things and assume f = 0 and c = 0,

ˆ
aijDiuDjϕ ≤ 0 (2)

This was the original equation studied in the papers referenced above.
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Suppose u ≥ 0; otherwise replace u with its positive part. Plugging in ϕ = η2u

and applying both boundedness and ellipticity of aij , we obtain the estimate
ˆ

|D(uη)|2 ≤ C

{ˆ
|Dη|2u2

}
.

With 0 < r < R < 1, choose η supported on BR with η ≡ 1 on Br. Then by the
Sobolev inequality,

∥u∥L2χ(Br) ≤ C
1

R− r
∥u∥L2(BR)

where χ = n
n−2 > 1 so that 2χ = 2∗. We have successfully bounded a higher Lp norm

of u by its L2 norm on a larger set, at the cost of a factor 1
R−r and a smaller domain,

a price we’ll gladly pay. If the same were true for this higher power of u, we could
iterate, u → uχ → uχi

and obtain a chain of estimates leading back to ∥u∥L2(BR). As
χi → ∞, this gives control over the L∞ norm of u, albeit on a smaller set than the
initial ball BR. So long as the decrements of the radius, R − r, decrease fast enough,
we can get an estimate of supx∈B 1

2

u = limi→∞ ∥u∥L2χi (Bri
) in terms of ∥u∥L2(BR) with

R = 1.
Lets see the details. Notice that since x 7→ xχ is a convex function when χ > 1,

and has positive derivative when x > 0, uχ is also a sub-solution to 2. A-fortiori, we
iterate the bound in the previous paragraph; set ri =

1
2 + 1

2i+1 . Then

∥u∥L2χi (Bri
) ≤ C

1

χi 2
− i

χi ∥u∥L2χi−1B(ri−1)

Repeatedly applying this bound to the left-hand side,

∥u∥L2χi (Bri
) ≤ C

∑
j≤i

1

χj 2
−

∑
j≤i

j

χj ∥u∥L2B(r0)

Letting i → ∞ on both sides gives the result: the left-hand side becomes ∥u∥L∞(B1/2),
while the constants appearing on the right have convergent sums as exponents:

sup
B1/2

u ≤ C∥u∥L2(B1)

The General Case
We return to the general case of c, f ∈ Lq(B1) for q > n

2 ,
ˆ

aijDiuDjϕ+ cuϕ ≤
ˆ

fϕ. (3)

With care, Moser’s approach will work once again. Set ũ = u+ + k with k ≥ 0 to be
determined in order to handle ∥f∥q. Plug in ϕ = η2ũ, again applying ellipticity, to
obtain ˆ

|D(ũη)2| ≤ C

{ˆ
|Dη|2ũ2 +

ˆ
|c|η2ũ2 +

ˆ
fη2ũ

}
Note that ũ ≥ k, so fũ ≥ f

k ũ
2. Choosing k = ∥f∥q, we can group the |c| and |f | terms,

apply Holder’s inequality and use the condition that q > n/2 to obtain
ˆ

|D(ũη)2| ≤ C

{ˆ
|Dη|2ũ2 +

ˆ
η2ũ2

}
Choosing η in the same way as above and applying the Sobolev inequality

∥ũ∥L2χ(Br) ≤ C
1

R− r
∥ũ∥L2(BR)
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This is once again the starting point of the Moser iteration scheme. But there is a
problem: we don’t know whether ũχ satisfies the same type of estimate as ũ. Before,
convexity saved us. But now we need to check by hand. Luckily, x 7→ xχ is a nice
enough function for things to work; we can still apply Holder’s inequality to products
involving uχ. For the details, see section 4.2 of [2]. At the end of the day, we found
the right bound,

sup
B1/2

u ≤ sup
B1/2

ũ ≤ C∥ũ∥L2(B1) ≤ C
{
∥u∥L2(B1) + ∥f∥q

}
.

De Giorgi’s Approach
Starting from 3, set ϕ = η2v where v = (u − k)+, with k to be chosen later (but

not for the purpose of removing ∥f∥q). Our goal is to show, for k large enough,
ˆ
B1/2

((u− k)+)2 = 0

It immediately follows that
sup
B1/2

u+ ≤ k

Hopefully, k is of the form in the theorem (it will be, don’t worry). This is a decidedly
different method from Moser’s approach: instead of using the Sobolev inequality to
directly lower-bound

´
|D(ηũ)|2, in this approach, we want the L2 of v on the left-hand

side rather than the Sobolev norm. To make progress, apply Holder’s inequality:

∥vη∥2 ≤ ∥vη∥22∗ |{vη > 0}|1− 2
2∗

≤ ∥D(vη)∥22|{vη > 0}| 2
n

This 2
n will be crucial later. If we apply the usual ellipticity conditions to 3 with our

chosen ϕ, we find
ˆ

D(vη)2 ≤ C

{ˆ
|Dη|2v2 +

ˆ
|c|uvη2 +

ˆ
|f |vη2

}
To make progress, we apply Holder’s inequality to the c and f terms. For example,

ˆ
|f |vη2 ≤ ∥f∥q∥ηv∥2∗ |{vη > 0}|1−

1
2∗ − 1

q

≤ ∥f∥q∥D(ηv)∥2|{vη > 0}|
1
2+

1
n− 1

q

≤ 1

2ε
∥f∥q|{vη > 0}|1+

2
n− 2

q +
ε

2
∥D(ηv)∥22

We can ε as small as we like to absorb the second term into our constant C. Since
q > n/2, we can replace the measure term by

|{vη > 0}|1+( 2
n− 1

q )−
1
q = C(n, q)|{vη > 0}|1−

1
q

Doing the same for the c term and applying the above inequality to
´
|D(ηv)|2, we

obtain the start of an iteration scheme different from Moser’s.
Define A(k, r) = {u > k} ∩Br. Using the same η function as in the Moser section

∥v∥2L2(Br)
≤ C

{
1

(R− r)2
|A(k,R)|ε∥v∥L2(BR) + (k + ∥f∥q)2|A(k,R)|1+ε

}
where ε = 2

n − 1
q > 0. Without this ε of room, there is no hope of iteration. Remember

that v = (u − k)+. In order to iterate, when going from right to left, we need to
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decrease the size of the domain and increase the cutoff to some h > k. We can then
chain estimates to end with ∥(u− h)+∥L2(B1/2) on the left-hand side.

To see this in action, we need bounds on |A(k,R)|. We follow [2] closely. By
Markov’s inequality, |A(k,R)| ≤ 1

k∥u
+∥L2 , so the above inequality holds for k0 =

C∥u+∥L2 with C large enough. Now note that A(k, r) ⊂ A(k,R), and if h > k, then
A(k, r) ⊃ A(h, r). We can apply Markov’s inequality along with these inclusions to
obtain

|A(k, r)| ≤ 1

(h− k)2

ˆ
A(k,R)

(u− k)2

Set ri =
1
2 + 1

2i+1 and ki = k0 + k(1 − 1
2i ). Writing ϕ(k, r) = ∥(u+ − k)+∥L2(Br), we

have a chain of inequalities,

ϕ(ki, ri) ≤ C2iϕ(ki−1, ri−1)
1+ε

We have the freedom to choose our end-point, k, as large as we like. In particular, we
can make it so that, for some constant γ > 1,

ϕ(ki, ri) ≤
ϕ(k0, r0)

γi
(4)

From this we can show Φ(k∞, r∞) = ∥(u−k∞)+∥2L2(B1/2)
= 0. Since k∞ = k, whichever

value of k we choose to make 4 hold will yield our desired bound. For details, once
again see [2]. The important point is that the 1 + ε power of the right-hand side
allows the inequality chain to accumulate powers of ϕ(k0, r0). If this balances with the
accumulating powers of 2i and C, the argument goes through.
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