A Geometric Interpretation of Kalman Filters

Liam P.

2024-1-29

Liam P.

A Geometric Interpretation of Kalman Fil

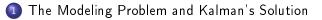
2024-1-29

→

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Outline



- Quick Results for Inner products
- 3 Consequences of the Projection Theorem
 - Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions

Topic

The Modeling Problem and Kalman's Solution

- 2) Quick Results for Inner products
- 3 Consequences of the Projection Theorem
- 4 Recursive Solution to Linear Discrete-Time Dynamics
- 5 Extensions

< 回 > < 三 > < 三 >

Physical Problem and Pictures

Given:

- An initial random vector $x_0 \in \mathbb{R}^n$ with covariance $C_0 = E[x_0 x_0^T]$
- Measurements $\{\mathsf{z}_i\}_{i=1}^k \subset \mathbb{R}^m$

• a linear relationship between x_i and z_i , as well as x_i and x_{i+1} :

$$z_i = M_i x_i + \delta_i$$
$$x_{i+1} = A_i x_i + \epsilon_i$$

where ϵ_i, δ_i white Gaussian noise with covariance Q_i , R_i resp.

 An estimate x_{k+1|k} is called a best least-squares estimate of x_{k+1} out of random vectors in M if

$$\inf_{y \in M} \mathbb{E}[\|x_{k+1} - y\|^2] = \mathbb{E}[\|x_{k+1} - x_{k+1|k}\|^2]$$

Liam P.

- ロ ト - 4 同 ト - 4 回 ト - - 三日

Physical Problem and Pictures

Given:

- An initial random vector $x_0 \in \mathbb{R}^n$ with covariance $C_0 = E[x_0 x_0^T]$
- Measurements $\{\mathsf{z}_i\}_{i=1}^k \subset \mathbb{R}^m$
- a linear relationship between x_i and z_i , as well as x_i and x_{i+1} :

$$z_i = M_i x_i + \delta_i$$
$$x_{i+1} = A_i x_i + \epsilon_i$$

where ϵ_i, δ_i white Gaussian noise with covariance Q_i, R_i resp.

 An estimate x_{k+1|k} is called a best least-squares estimate of x_{k+1} out of random vectors in M if

$$\inf_{y \in M} \mathbb{E}[\|x_{k+1} - y\|^2] = \mathbb{E}[\|x_{k+1} - x_{k+1|k}\|^2]$$

Liam P.

Physical Problem and Pictures

Given:

- An initial random vector $x_0 \in \mathbb{R}^n$ with covariance $C_0 = E[x_0 x_0^T]$
- Measurements $\{\mathsf{z}_i\}_{i=1}^k \subset \mathbb{R}^m$
- a linear relationship between x_i and z_i , as well as x_i and x_{i+1} :

$$z_i = M_i x_i + \delta_i$$
$$x_{i+1} = A_i x_i + \epsilon_i$$

where ϵ_i, δ_i white Gaussian noise with covariance Q_i, R_i resp.

 An estimate x_{k+1|k} is called a best least-squares estimate of x_{k+1} out of random vectors in M if

$$\inf_{y \in M} \mathbb{E}[\|x_{k+1} - y\|^2] = \mathbb{E}[\|x_{k+1} - x_{k+1|k}\|^2]$$

The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let $x_{0|-1} = x_0$. The best expected least-squares estimate of $x_{k+1|k}$ and $C_{k+1|k}$ is given recursively by 1.) (Update)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}H_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} (z_k - M_k x_{k|k-1})$$

$$C_{k|k} = C_{k|k-1} - C_{k|k-1}M_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} M_k C_{k|k-1}^T$$

2.) (Predict)

$$x_{k+1|n} = A_k x_{k|k}$$
$$C_{k+1|n} = A_k C_{k|k} A_k^T + Q_k$$

Liam P.

A Geometric Interpretation of Kalman Fil

The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let $x_{0|-1} = x_0$. The best expected least-squares estimate of $x_{k+1|k}$ and $C_{k+1|k}$ is given recursively by 1.) (Update)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}H_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} (z_k - M_k x_{k|k-1})$$
$$C_{k|k} = C_{k|k-1} - C_{k|k-1}M_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} M_k C_{k|k-1}^T$$

2.) (Predict)

$$x_{k+1|n} = A_k x_{k|k}$$
$$C_{k+1|n} = A_k C_{k|k} A_k^T + Q_k$$

Liam P

A Geometric Interpretation of Kalman Fil

The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let $x_{0|-1} = x_0$. The best expected least-squares estimate of $x_{k+1|k}$ and $C_{k+1|k}$ is given recursively by 1.) (Update)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}H_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} \left(z_k - M_k x_{k|k-1} \right)$$
$$C_{k|k} = C_{k|k-1} - C_{k|k-1}M_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} M_k C_{k|k-1}^T$$

2.) (Predict)

$$x_{k+1|n} = A_k x_{k|k}$$
$$C_{k+1|n} = A_k C_{k|k} A_k^T + Q_k$$

A Geometric Interpretation of Kalman Fil

Topic

Quick Results for Inner products

- 3 Consequences of the Projection Theorem
- 4 Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions

Basic Definitions

Definition

 $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a *Hilbert Space* if it satisfies the following conditions:

- $\cdot \ \mathcal{H}$ is vector space
- · \mathcal{H} is equipped with an inner product $\langle \cdot, \cdot \rangle : \mathcal{H} imes \mathcal{H} o \mathbb{R}$
- \cdot The norm $\|\cdot\|=\sqrt{\langle\cdot,\cdot\rangle}$ induces a complete metric space topology on $\mathcal H$

Examples and Non-examples

Examples:

- \mathbb{R}^n for every *n* equipped with the usual dot-product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$
- The space ℓ^2 of square-summable sequences $x = (x_1, x_2, \cdots, x_n, \cdots)$ equipped with the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$
- The space $L^2(\Omega)$ of square μ -integrable measurable real-valued functions on Ω , i.e., $f: \Omega \to \mathbb{R}$ measurable and $\int_{\Omega} |f|^2 d\mu$, with inner product $\langle f, g \rangle = \int_{\Omega} fg d\mu$

Examples and Non-examples

Examples:

- \mathbb{R}^n for every *n* equipped with the usual dot-product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$
- The space ℓ^2 of square-summable sequences $x = (x_1, x_2, \cdots, x_n, \cdots)$ equipped with the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$
- The space $L^2(\Omega)$ of square μ -integrable measurable real-valued functions on Ω , i.e., $f: \Omega \to \mathbb{R}$ measurable and $\int_{\Omega} |f|^2 d\mu$, with inner product $\langle f, g \rangle = \int_{\Omega} fg d\mu$

- ロ ト - 4 同 ト - 4 回 ト - - 三日

Examples and Non-examples

Examples:

- \mathbb{R}^n for every *n* equipped with the usual dot-product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$
- The space ℓ^2 of square-summable sequences $x = (x_1, x_2, \cdots, x_n, \cdots)$ equipped with the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$
- The space $L^2(\Omega)$ of square μ -integrable measurable real-valued functions on Ω , i.e., $f: \Omega \to \mathbb{R}$ measurable and $\int_{\Omega} |f|^2 d\mu$, with inner product $\langle f, g \rangle = \int_{\Omega} fg \ d\mu$

Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner product:

Objects: Random vectors x = [x₁ x₂ ··· x_n]^T where x_i are each random variables with E[x_i²] < ∞

• Inner product: $\langle x, y \rangle_{\mathbb{E}^n} = \mathbb{E}[x \cdot y] = \sum_{i=1}^n \mathbb{E}[x_i y_i]$

In particular: the minimum norm problem $\inf_{y \in M} \mathbb{E}[\|y - x\|^2]$ can be expressed as $\inf_{y \in M} \|y - x\|_{\mathbb{E}^n}^2$.

Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner product:

- Objects: Random vectors x = [x₁ x₂ ··· x_n]^T where x_i are each random variables with E[x_i²] < ∞
- Inner product: $\langle x, y \rangle_{\mathbb{E}^n} = \mathbb{E}[x \cdot y] = \sum_{i=1}^n \mathbb{E}[x_i y_i]$

In particular: the minimum norm problem $\inf_{y\in M}\mathbb{E}[\|y-x\|^2]$ can be expressed as $\inf_{y\in M}\|y-x\|^2_{\mathbb{R}^n}$.

- ロ ト - 4 同 ト - 4 回 ト - - 三日

Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner product:

- Objects: Random vectors x = [x₁ x₂ ··· x_n]^T where x_i are each random variables with E[x_i²] < ∞
- Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{E}^n} = \mathbb{E}[\mathbf{x} \cdot \mathbf{y}] = \sum_{i=1}^n \mathbb{E}[x_i y_i]$

In particular: the minimum norm problem $\inf_{y \in M} \mathbb{E}[||y - x||^2]$ can be expressed as $\inf_{y \in M} ||y - x||^2_{\mathbb{E}^n}$.

(비) (레) (코) (코) (크)

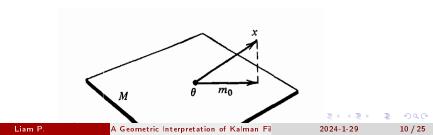
What We'll Need: The Projection Theorem

Theorem (Orthogonal Projections Exist)

Let $M \subseteq \mathcal{H}$ be a closed subspace of \mathcal{H} . Let $x \in \mathcal{H}$ be any vector. Then there exists a unique $m_0 \in M$ which attains a minimum distance to x:

$$\inf_{m \in M} \|x - m\| = \|x - m_0\|$$

Furthermore, the error vector $x - m_0$ is perpendicular to M, i.e., for all $m \in M$, $\langle x - m_0, m \rangle = 0$.



Topic

2 Quick Results for Inner products

3 Consequences of the Projection Theorem

Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions

< 回 > < 三 > < 三 >

Let $y = Ax + \epsilon$ where $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ are random vectors and $E[\epsilon \epsilon^T] = Q, \quad E[xx^T] = C, \quad E[\epsilon x^T] = 0.$

- Idea: We know y and A, but we want x
- Estimate components x as linear combinations of components of y

$$x_i = \sum_{j=1}^m a_j y_j$$

- Then looking for closest $\hat{x} \in M = \{Ky : K \in \mathbb{R}^{n \times m}\}$
 - (can write M as span $(y_i e_j)_{i \in \{1, \dots, m\}, j \in \{1, \dots, n\}}$)

12 / 25

Let $y = Ax + \epsilon$ where $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ are random vectors and

$$E[\epsilon \epsilon^{T}] = Q, \quad E[xx^{T}] = C, \quad E[\epsilon x^{T}] = 0.$$

• Idea: We know y and A, but we want x

• Estimate components x as linear combinations of components of y

$$x_i = \sum_{j=1}^m a_j y_j$$

• Then looking for closest $\hat{x} \in M = \{Ky : K \in \mathbb{R}^{n \times m}\}$

• (can write M as span $(y_i e_j)_{i \in \{1, \dots, m\}, j \in \{1, \dots, n\}}$)

ヘロト ヘ回ト ヘヨト ヘヨト

Let $y = Ax + \epsilon$ where $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ are random vectors and

$$E[\epsilon \epsilon^{T}] = Q, \quad E[xx^{T}] = C, \quad E[\epsilon x^{T}] = 0.$$

- Idea: We know y and A, but we want x
- Estimate components x as linear combinations of components of y

$$x_i = \sum_{j=1}^m a_j y_j$$

- Then looking for closest $\hat{x} \in M = \{Ky : K \in \mathbb{R}^{n \times m}\}$
 - (can write M as span $(y_i e_j)_{i \in \{1, \dots, m\}, j \in \{1, \dots, n\}}$)

Liam P

12 / 25

Let $y = Ax + \epsilon$ where $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ are random vectors and

$$E[\epsilon \epsilon^{T}] = Q, \quad E[xx^{T}] = C, \quad E[\epsilon x^{T}] = 0.$$

- Idea: We know y and A, but we want x
- Estimate components x as linear combinations of components of y

$$x_i = \sum_{j=1}^m a_j y_j$$

- Then looking for closest $\hat{x} \in M = \{Ky : K \in \mathbb{R}^{n \times m}\}$
 - (can write M as span $(y_i e_j)_{i \in \{1, \dots, m\}, j \in \{1, \dots, n\}}$)

A (10) A (10)

Theorem

Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ be random vectors, with $cov(y, y)_{ij} = \langle y_i, y_j \rangle_{\mathbb{E}} = \mathbb{E}[y_i y_j]$, $cov(x, y)_{ij} = \langle x_i, y_j \rangle_{\mathbb{E}}$ and $span(\{y_i e_j\}_{i,j=1}^{m,n}) = M \subseteq \mathbb{R}^n$. Then the unique minimizing vector $\hat{x} \in M$ is given by

$$\hat{x} = cov(x, y)cov(y, y)^{-1}y$$
$$\hat{C} = \mathbb{E}[(\hat{x} - x)(\hat{x} - x)^{T}] = cov(x, x) - cov(x, y)cov(y, y)^{-1}cov(x, y)^{T}$$

Proof.

- Any vector $y_0 \in M$ can be written as Ky for $K \in \mathbb{R}^{n \times m}$.
- The minimizing vector $Ky = \hat{x} \in M$ must have the property that $\langle Ky x, y_i e_j \rangle = 0$ for all $i \in [1, \dots, n]$, $j \in [1, \dots, m]$. Therefore

$$\forall i, j : \langle Ky, y_i e_j \rangle = \langle x, y_i e_j \rangle$$

- Forming a system of equations gives $cov(y, y)K^T = cov(x, y)^T$. Then $K = cov(x, y)cov(y, y)^{-1}$
- Compute $\mathbb{E}[(x \hat{x})(x \hat{x})^T]$ by plugging in \hat{x}

Proof.

- Any vector $y_0 \in M$ can be written as Ky for $K \in \mathbb{R}^{n \times m}$.
- The minimizing vector $Ky = \hat{x} \in M$ must have the property that $\langle Ky x, y_i e_j \rangle = 0$ for all $i \in [1, \dots, n]$, $j \in [1, \dots, m]$. Therefore

$$\forall i, j: \langle Ky, y_i e_j \rangle = \langle x, y_i e_j \rangle$$

- Forming a system of equations gives $cov(y, y)K^T = cov(x, y)^T$. Then $K = cov(x, y)cov(y, y)^{-1}$
- Compute $\mathbb{E}[(x \hat{x})(x \hat{x})^T]$ by plugging in \hat{x}

Proof.

- Any vector $y_0 \in M$ can be written as Ky for $K \in \mathbb{R}^{n \times m}$.
- The minimizing vector $Ky = \hat{x} \in M$ must have the property that $\langle Ky x, y_i e_j \rangle = 0$ for all $i \in [1, \dots, n]$, $j \in [1, \dots, m]$. Therefore

$$\forall i, j : \langle Ky, y_i e_j \rangle = \langle x, y_i e_j \rangle$$

- Forming a system of equations gives $cov(y, y)K^T = cov(x, y)^T$. Then $K = cov(x, y)cov(y, y)^{-1}$
- Compute $\mathbb{E}[(x \hat{x})(x \hat{x})^T]$ by plugging in \hat{x}

く 何 ト く ヨ ト く ヨ ト

Let $y = Ax + \epsilon$ where $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ are random vectors and $E[\epsilon \epsilon^T] = Q$, $E[xx^T] = C$, $E[\epsilon x^T] = 0$.

Theorem

Then the optimal linear estimate \hat{x} is

$$\hat{x} = CA^{T} (ACA^{T} + Q)^{-1} y$$
$$\hat{C} = C - CA^{T} (ACA^{T} + Q)^{-1} AC^{T}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal Estimator of Transformed Subspace

Let *L* be any linear transformation of \mathbb{R}^n . Then if you transform the problem to finding the closest vector to Lx in span $(\{y_i(Le_j)\}) = LM$, the solution is exactly $L\hat{x}$.

Example (Example)

If you're given $x_{k|k}$ and want to find $x_{k+1|k}$, just hit $x_{k|k}$ with your dynamics,

 $x_{k+1|k} = A_k x_{k|k}$

Liam P.

Optimal Estimator of Transformed Subspace

Let *L* be any linear transformation of \mathbb{R}^n . Then if you transform the problem to finding the closest vector to Lx in span $(\{y_i(Le_j)\}) = LM$, the solution is exactly $L\hat{x}$.

Example (Example)

If you're given $x_{k|k}$ and want to find $x_{k+1|k}$, just hit $x_{k|k}$ with your dynamics,

$$x_{k+1|k} = A_k x_{k|k}$$

- Already have a best least-squares estimate x̂ ∈ ℝⁿ of x ∈ ℝⁿ from a vector y ∈ ℝ^m.
- What happens if new information arrives, $y' \in \mathbb{R}^{\ell}$?
- Linear algebra idea: form orthogonal subspaces M and \tilde{M} from y and y' resp.
 - "Take out from y' what we know from y":

$$\tilde{y} = y' - \operatorname{proj}_{\{y_i e_j\}_{j \in \{1, \dots, \ell\}}}(y')$$

17 / 25

・ 同 ト ・ ヨ ト ・ ヨ ト

- Already have a best least-squares estimate x̂ ∈ ℝⁿ of x ∈ ℝⁿ from a vector y ∈ ℝ^m.
- What happens if new information arrives, $y' \in \mathbb{R}^{\ell}$?
- Linear algebra idea: form orthogonal subspaces M and \tilde{M} from y and y' resp.

• "Take out from y' what we know from y":

$$\tilde{y} = y' - \operatorname{proj}_{\{y_i e_j\}_{j \in \{1, \dots, \ell\}}}(y')$$

17 / 25

・ 同 ト ・ ヨ ト ・ ヨ ト

- Already have a best least-squares estimate x̂ ∈ ℝⁿ of x ∈ ℝⁿ from a vector y ∈ ℝ^m.
- What happens if new information arrives, $y' \in \mathbb{R}^{\ell}$?
- Linear algebra idea: form orthogonal subspaces M and \tilde{M} from y and y' resp.
 - "Take out from y' what we know from y":

$$\tilde{y} = y' - \operatorname{proj}_{\{y_i e_j\}_{j \in \{1, \cdots, \ell\}}}(y')$$

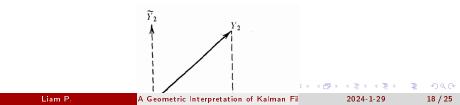
Theorem $(P_{M+M'} = P_M \oplus P_{\tilde{M}})$

The best estimate of the random vector $x \in \mathbb{R}^n$ built from both $y \in \mathbb{R}^m$ and $y' \in \mathbb{R}^\ell$ can be computed as

$$\hat{\hat{x}} = \hat{x} + cov(x, \tilde{y})cov(\tilde{y}, \tilde{y})^{-1}\tilde{y}$$

 $\hat{\hat{C}} = \hat{C} - cov(x, \tilde{y})cov(\tilde{y}, \tilde{y})^{-1}cov(x, \tilde{y})^{T}$

where $\tilde{y} = y' - \operatorname{proj}_{\{y_i e_j\}_{j \in \{1, \dots, \ell\}}}(y')$ and \tilde{M} is the subspace of random vectors in \mathbb{R}^n generated by vectors of the form $K\tilde{y}$ for $n \times \ell$ matrix K.



Topic

- 2) Quick Results for Inner products
- 3 Consequences of the Projection Theorem

4 Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions

< □ > < 同 > < 回 > < 回 > < 回 >

The measurement problem

Given $x_{k|k-1}$, we'd like to update our estimate to $x_{k|k}$ subject to

$$z_k = M_k x_k + \delta_k$$

• Apply previous theorem and linear transformation property: set $\tilde{z} = z_k - M_k x_{k|k-1}$. Then

$$\begin{aligned} x_{k|k} &= x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z} \\ C_{k|k} &= C_{k|k-1} - cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^T \end{aligned}$$

(in more typical form:)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}M_k^{\mathsf{T}} \left[M_k C_{k|k-1}M_k^{\mathsf{T}} + R_k \right]^{-1} \left(z_k - M_k x_{k|k-1} \right)$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

The measurement problem

Given $x_{k|k-1}$, we'd like to update our estimate to $x_{k|k}$ subject to

$$z_k = M_k x_k + \delta_k$$

• Apply previous theorem and linear transformation property: set $\tilde{z} = z_k - M_k x_{k|k-1}$. Then

$$\begin{aligned} x_{k|k} &= x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z} \\ C_{k|k} &= C_{k|k-1} - cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^T \end{aligned}$$

(in more typical form:)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}M_k^{\mathsf{T}} \left[M_k C_{k|k-1}M_k^{\mathsf{T}} + R_k \right]^{-1} \left(z_k - M_k x_{k|k-1} \right)$$

The measurement problem

Given $x_{k|k-1}$, we'd like to update our estimate to $x_{k|k}$ subject to

$$z_k = M_k x_k + \delta_k$$

• Apply previous theorem and linear transformation property: set $\tilde{z} = z_k - M_k x_{k|k-1}$. Then

$$\begin{aligned} x_{k|k} &= x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z} \\ C_{k|k} &= C_{k|k-1} - cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^T \end{aligned}$$

(in more typical form:)

$$x_{k|k} = x_{k|k-1} + C_{k|k-1}M_k^T \left[M_k C_{k|k-1}M_k^T + R_k \right]^{-1} \left(z_k - M_k x_{k|k-1} \right)$$

The dynamics problem

Given $x_{k|k}$, we'd like to update our estimate to $x_{k+1|k}$ subject to

$$x_{k+1} = A_k x_k + \epsilon_k$$

Solved in the example earlier, just hit $x_{k|k}$ with A_k to get $x_{k+1|k}$

$$\begin{aligned} x_{k+1|k} &= A_k x_{k|k} \\ C_{k+1|k} &= A_k C_{k|k} A_k^T + cov(\epsilon, \epsilon) \end{aligned}$$

The dynamics problem

Given $x_{k|k}$, we'd like to update our estimate to $x_{k+1|k}$ subject to

$$x_{k+1} = A_k x_k + \epsilon_k$$

Solved in the example earlier, just hit $x_{k|k}$ with A_k to get $x_{k+1|k}$

$$\begin{aligned} x_{k+1|k} &= A_k x_{k|k} \\ C_{k+1|k} &= A_k C_{k|k} A_k^T + cov(\epsilon, \epsilon) \end{aligned}$$

Liam P.

Putting it together

Theorem (Kalman, recursive linear estimation)

Let $x_{0|-1} = x_0$ be known, and ϵ_i, δ_i white noise with positive definite covariances. Then the best estimate of $x_{k+1|k}$ given measurements $\{z_k\}$ can be computed recursively by

$$(update, set \quad \tilde{z} = z_k - M_k x_{k|k-1}) :$$

$$x_{k|k} = x_{k|k-1} + cov(\tilde{z}, x_k)cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$$

$$C_{k|k} = C_{k|k-1} - cov(x, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^T$$

$$(predict)$$

$$x_{k+1|k} = A_k x_{k|k}$$

$$C_{k+1|k} = A_k C_{k|k} A_k^T + cov(\epsilon, \epsilon)$$

Liam P.

Putting it together

Theorem (Kalman, recursive linear estimation)

Let $x_{0|-1} = x_0$ be known, and ϵ_i, δ_i white noise with positive definite covariances. Then the best estimate of $x_{k+1|k}$ given measurements $\{z_k\}$ can be computed recursively by

$$(update, set \quad \tilde{z} = z_k - M_k x_{k|k-1}):$$

$$x_{k|k} = x_{k|k-1} + cov(\tilde{z}, x_k)cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$$

$$C_{k|k} = C_{k|k-1} - cov(x, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^{T}$$

$$(predict)$$

$$x_{k+1|k} = A_k x_{k|k}$$

$$C_{k+1|k} = A_k C_{k|k} A_k^T + cov(\epsilon, \epsilon)$$

Putting it together

Theorem (Kalman, recursive linear estimation)

Let $x_{0|-1} = x_0$ be known, and ϵ_i, δ_i white noise with positive definite covariances. Then the best estimate of $x_{k+1|k}$ given measurements $\{z_k\}$ can be computed recursively by

$$(update, set \quad \tilde{z} = z_k - M_k x_{k|k-1}):$$

$$x_{k|k} = x_{k|k-1} + cov(\tilde{z}, x_k)cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$$

$$C_{k|k} = C_{k|k-1} - cov(x, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}cov(x, \tilde{z})^{T}$$

$$(predict)$$

$$x_{k+1|k} = A_k x_{k|k}$$

$$C_{k+1|k} = A_k C_{k|k} A_k^T + cov(\epsilon, \epsilon)$$

Topic

- The Modeling Problem and Kalman's Solution
- 2) Quick Results for Inner products
- 3 Consequences of the Projection Theorem
- Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions

Extensions

• You can extrapolate further than time *n*: $x_{n+k|n} = A^k x_{k|k}$

- If there are gaps in the measurements at times t_i , account for this theoretically by setting $M_i = 0$
- If your dynamics depend on a time elapsed, Δt = t_{i+1} t_i, encode this in A_i and ε_i and everything follows through, e.g., if x_n = [p_n v_n]^T

$$egin{aligned} &\mathcal{A}_n(\Delta t) = egin{bmatrix} 1 & \Delta t \ 0 & 1 \end{bmatrix} \ &\epsilon_i(\Delta t) = (\Delta t)^
u \epsilon \end{aligned}$$

イロト イポト イヨト イヨト

Extensions

- You can extrapolate further than time $n: x_{n+k|n} = A^k x_{k|k}$
- If there are gaps in the measurements at times t_i , account for this theoretically by setting $M_i = 0$
- If your dynamics depend on a time elapsed, Δt = t_{i+1} t_i, encode this in A_i and ε_i and everything follows through, e.g., if x_n = [p_n v_n]^T

$$egin{aligned} &A_n(\Delta t) = egin{bmatrix} 1 & \Delta t \ 0 & 1 \end{bmatrix} \ &\epsilon_i(\Delta t) = (\Delta t)^
u \epsilon \end{aligned}$$

Extensions

- You can extrapolate further than time $n: x_{n+k|n} = A^k x_{k|k}$
- If there are gaps in the measurements at times t_i , account for this theoretically by setting $M_i = 0$
- If your dynamics depend on a time elapsed, Δt = t_{i+1} t_i, encode this in A_i and ε_i and everything follows through, e.g., if x_n = [p_n v_n]^T.

$$A_n(\Delta t) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$
$$\epsilon_i(\Delta t) = (\Delta t)^{\nu} \epsilon$$

Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable function $g : \mathbb{R}^n \to \mathbb{R}^m$:

$$z_k = g(x_k) + \epsilon_k$$

Mantra: Use the function where you can, but use linearization of *g* for projections. Then we pray.

Example (EKF (half))

Set $\tilde{z} = z_k - g(x_{k|k-1})$. Set $M_k = Jac_g(x_k)$. Update to $x_{k|k}$ by:

$$x_{k|k} = x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$$

where $cov(\tilde{z}, \tilde{z}) = M_k C_{k|k-1} M_k^T + cov(\delta_k, \delta_k)$ and $cov(x, \tilde{z}) = C_{k|k-1} M_k^T$.

(日)

Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable function $g : \mathbb{R}^n \to \mathbb{R}^m$:

$$z_k = g(x_k) + \epsilon_k$$

Mantra: Use the function where you can, but use linearization of g for projections. Then we pray.

Example (EKF (half)) Set $\tilde{z} = z_k - g(x_{k|k-1})$. Set $M_k = Jac_g(x_k)$. Update to $x_{k|k}$ by:

$$x_{k|k} = x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$$

where $cov(\tilde{z}, \tilde{z}) = M_k C_{k|k-1} M_k^T + cov(\delta_k, \delta_k)$ and $cov(x, \tilde{z}) = C_{k|k-1} M_k^T$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable function $g : \mathbb{R}^n \to \mathbb{R}^m$:

$$z_k = g(x_k) + \epsilon_k$$

Mantra: Use the function where you can, but use linearization of g for projections. Then we pray.

Example (EKF (half)) Set $\tilde{z} = z_k - g(x_{k|k-1})$. Set $M_k = Jac_g(x_k)$. Update to $x_{k|k}$ by: $x_{k|k} = x_{k|k-1} + cov(x_k, \tilde{z})cov(\tilde{z}, \tilde{z})^{-1}\tilde{z}$

where $cov(\tilde{z}, \tilde{z}) = M_k C_{k|k-1} M_k^T + cov(\delta_k, \delta_k)$ and $cov(x, \tilde{z}) = C_{k|k-1} M_k^T$.