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The Modeling Problem and Kalman's Solution

Physical Problem and Pictures

Given:
@ An initial random vector xg € R"” with covariance Cy = E[xoxoT]

@ Measurements {z,-}f-‘:1 c RmM
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The Modeling Problem and Kalman's Solution

Physical Problem and Pictures

Given:
@ An initial random vector xg € R"” with covariance Cy = E[xoxoT]

@ Measurements {z,-}f-‘:1 c RmM

@ a linear relationship between x; and z;, as well as x; and xj11:

zj = Mix; + 9;

Xiy1 = Aixj + €

where ¢;, §; white Gaussian noise with covariance Q;, R; resp.
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The Modeling Problem and Kalman's Solution

Physical Problem and Pictures

Given:
@ An initial random vector xg € R"” with covariance Cy = E[xoxoT]

@ Measurements {z,-}f-‘:1 c RmM

@ a linear relationship between x; and z;, as well as x; and xj11:

zj = Mix; + 6;

Xi+1 = AiXj + €

where ¢;, §; white Gaussian noise with covariance Q;, R; resp.

@ An estimate xj ) is called a best least-squares estimate of x4 out
of random vectors in M if

inf Efllxcr1 — y)1°] = Elllxkr1 — Xierael’]
yeM
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The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let xg_1 = xo. The best expected least-squares estimate of
Xit1jk and Cyy1)k is given recursively by
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The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let xg_1 = xo. The best expected least-squares estimate of
Xit1jk and Cyy1)k is given recursively by
1.) (Update)

—1
Xk = Xkfk—1 + Chpk—1H{ [Mk Cupe—1 My + Rk} (21 = Micxik—1)

T T -t T
Cuik = Cijk—1 — Cij—1 My {Mkck|k—1 My + Rk] My Chj—1
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The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let xg_1 = xo. The best expected least-squares estimate of
Xit1jk and Cyy1)k is given recursively by
1.) (Update)

-1
Xk = Xkfk—1 + Chpk—1H{ [Mk Cupe—1 My + Rk} (21 = Micxik—1)
Cugte = Cufi-1 — Cogp 1M | Mi i1 M R]_ll\/l cr
klk = Cklk—1 klk—1 M | M Cpeje—1 My + Ric Kk Chlk—1
2.) (Predict)

Xk+41|n = AkXk|k
Chr1ln = Ak Cuk AL + Qi
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Quick Results for Inner products

Basic Definitions

Definition

(H, (-,-)) is a Hilbert Space if it satisfies the following conditions:
- H is vector space
- H is equipped with an inner product (-,-) : H x H — R

- The norm || - || = v/(-, ) induces a complete metric space topology on
H

v
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Quick Results for Inner products

Examples and Non-examples

Examples:

e RR” for every n equipped with the usual dot-product (x,y) =7 x;yi
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Quick Results for Inner products

Examples and Non-examples

Examples:

e RR” for every n equipped with the usual dot-product (x,y) =7 x;yi

o The space (2 of square-summable sequences x = (xq, X2, -+ ,Xn, - )
equipped with the inner product (x,y) = > 2, xiyi
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Quick Results for Inner products

Examples and Non-examples

Examples:
e RR” for every n equipped with the usual dot-product (x,y) =7 x;yi

o The space (2 of square-summable sequences x = (xq, X2, -+ ,Xn, - )
equipped with the inner product (x,y) = > 2, xiyi

e The space L%(Q) of square 1 -integrable measurable real-valued
functions on Q, i.e., f : Q@ — R measurable and [, ||°dp, with inner
product (f,g) = [, fg dp
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Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner
product:
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Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner
product:

o Objects: Random vectors x = [x; X2 - -+ x,] T where x; are each
random variables with E[x?] < oo

o Inner product: (x,y)gn = E[x - y] = Y7_; E[xiyi]
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Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner
product:

o Objects: Random vectors x = [x; X2 - -+ x,] T where x; are each
random variables with E[x?] < oo

o Inner product: (x,y)g» = E[x - y] = > ; E[xjyi]

In particular: the minimum norm problem inf,cp E[[|y — x||?] can be
expressed as inf, e ||y — x||2.
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What We'll Need: The Projection Theorem

Theorem (Orthogonal Projections Exist)

Let M C H be a closed subspace of H. Let x € H be any vector. Then
there exists a unique my € M which attains a minimum distance to x:

inf [|x — m|| = [|x — mol|
meM

Furthermore, the error vector x — myq is perpendicular to M, i.e., for all
mée M, (x —mg,m) =0.
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Consequences of the Projection Theorem
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax 4+ ¢ where y € R™, x € R” are random vectors and

Elee"] =@, E[xx"]=C, Elex"]=0.
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax 4+ ¢ where y € R™, x € R” are random vectors and

Elee"] =@, E[xx"]=C, Elex"]=0.

o Idea: We know y and A, but we want x
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax 4+ ¢ where y € R™, x € R” are random vectors and

Elee"] =@, E[xx"]=C, Elex"]=0.

o Idea: We know y and A, but we want x

o Estimate components x as linear combinations of components of y

m
Xi = 4y
j=1
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax 4+ ¢ where y € R™, x € R” are random vectors and

Elee"] =@, E[xx"]=C, Elex"]=0.

o Idea: We know y and A, but we want x

o Estimate components x as linear combinations of components of y
m
Xi = E :ajyj
j=1

@ Then looking for closest x € M = {Ky : K € R™*™}

o (can write M as span(yi€j)icq1,... ,m}, je{1,,n})
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Optimization on (sub)-Hilbert Spaces

Theorem

Let x € Ry € R™ be random vectors, with

cov(y,y)ij = (vi, ¥j)g = Elyiyjl, cov(x,y)ij = (xi,yj)g and
span({yiej}]iZ;) = M C R". Then the unique minimizing vector X € M is
given by

% = cov(x,y)cov(y,y) y
% —

x)(% — x)T] = cov(x,x) — cov(x, y)cov(y,y) Lcov(x,y)"
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Optimization on (sub)-Hilbert Spaces

Proof.
@ Any vector yp € M can be written as Ky for K € R™™.
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Optimization on (sub)-Hilbert Spaces

Proof.
@ Any vector yp € M can be written as Ky for K € R™™.

@ The minimizing vector Ky = X € M must have the property that
(Ky —x,yiej) =0forall i €[l,---,n], j€[1,---,m]|. Therefore

Vi,j: (Ky,yiej) = (x,yiej)
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Optimization on (sub)-Hilbert Spaces

Proof.
@ Any vector yp € M can be written as Ky for K € R™™.

@ The minimizing vector Ky = X € M must have the property that
(Ky —x,yiej) =0forall i €[l,---,n], j€[1,---,m]|. Therefore
Vij o (Ky,yiej) = (x,yiej)

o Forming a system of equations gives cov(y,y)K "

Then K = COV(X7}’)COV(}’7}’)_1

= cov(x,y)T.

o Compute E[(x — X)(x — %)T] by plugging in %
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax 4+ € where y € R™, x € R" are random vectors and

Elee"]=Q, E[xx"]=C, Elex"]=0.

Theorem
Then the optimal linear estimate X is

CAT(ACAT + Q) 1y
C— CAT(ACAT + Q) 'ACT

X

C
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Consequences of the Projection Theorem

Optimal Estimator of Transformed Subspace

Let L be any linear transformation of R”. Then if you transform the
problem to finding the closest vector to Lx in span({yi(Lej)}) = LM, the
solution is exactly LX.

A Geometric Interpretation of Kalman Fil 2024-1-29 16 /25



Consequences of the Projection Theorem

Optimal Estimator of Transformed Subspace

Let L be any linear transformation of R”. Then if you transform the
problem to finding the closest vector to Lx in span({yi(Lej)}) = LM, the
solution is exactly LX.

Example (Example)

If you're given x|, and want to find x 1k, just hit x,, with your
dynamics,
Xk+1lk = AkXk|k
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Consequences of the Projection Theorem

Direct Sums from a Sum

o Already have a best least-squares estimate ¥ € R” of x € R” from a
vector y € R™.
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Consequences of the Projection Theorem

Direct Sums from a Sum

o Already have a best least-squares estimate ¥ € R” of x € R” from a
vector y € R™.

o What happens if new information arrives, y’ € R¢?
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Consequences of the Projection Theorem

Direct Sums from a Sum

o Already have a best least-squares estimate ¥ € R” of x € R” from a
vector y € R™.

o What happens if new information arrives, y’ € R¢?

o Linear algebra idea: form orthogonal subspaces M and M from y and
y' resp.
o "Take out from y’ what we know from y":

}7 = y/ - proj{y,-e,-}je{l,,., N (.y/)
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Consequences of the Projection Theorem

Direct Sums from a Sum

Theorem (Pyymr = Py @ Pfy)

The best estimate of the random vector x € R" built from both y € R™
and y' € R can be computed as

=%+ cov(x,)7)C0V()7a)7)_1}~’
C =&~ cov(x,7)cov(7,7) Feov(x.7)T

where =y’ — PrOJ{yie}ic i ) (v') and M is the subspace of random
vectors in R" generated by vectors of the form Ky for n x £ matrix K.

,_,____-...-;-:‘-?

—— =,
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Recursive Solution to Linear Discrete-Time Dynamics

The measurement problem

Given x|y, we'd like to update our estimate to x . subject to

2 = Mixi + O
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Recursive Solution to Linear Discrete-Time Dynamics

The measurement problem

Given x|y, we'd like to update our estimate to x . subject to

2 = Myxi + Ok

@ Apply previous theorem and linear transformation property: set
z= Zy — kak\k—l- Then

_12

~1

Xi|k = Xk|k—1 + cov(xx, Z)cov(Z, 2)

Cuk = Cijk—1 — cov(xx, Z)cov(z, 2) cov(x,2)T
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Recursive Solution to Linear Discrete-Time Dynamics

The measurement problem

Given x|y, we'd like to update our estimate to x . subject to

2 = Mixi + O

@ Apply previous theorem and linear transformation property: set
z= Zy — kak\k—l- Then

Xk|lk = Xk|k—1 T+ COV(Xk, E)COV(E, 2)_12

-1 T

Cuk = Cijk—1 — cov(x, Z)cov(z,2) cov(x, 2)

(in more typical form:)

-1
Xk = Xkjk—1 + Cupp—1 M [Mkck\qukT + Rk} (zk = Micxik—1)
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Recursive Solution to Linear Discrete-Time Dynamics

The dynamics problem

Given x|, we'd like to update our estimate to x4 subject to

Xp41 = ArXx + €k
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Recursive Solution to Linear Discrete-Time Dynamics

The dynamics problem

Given x|, we'd like to update our estimate to x4 subject to
Xk+1 = ArXk + €k
Solved in the example earlier, just hit x|, with Ay to get x; 1)«

Xk41)k = AkXk|k
.
Ck+1|k = Aka|kAk + cov(e, €)
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Putting it together

Theorem (Kalman, recursive linear estimation)

Let xo|—1 = xo be known, and ¢;, 6; white noise with positive definite
covariances. Then the best estimate of x|« given measurements {z}
can be computed recursively by
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Putting it together

Theorem (Kalman, recursive linear estimation)

Let xo|—1 = xo be known, and ¢;, 6; white noise with positive definite
covariances. Then the best estimate of x|« given measurements {z}
can be computed recursively by

(update, set z = zj — Mxyi—1) :
Xi|k = Xk|k—1 + cov(Z, xx)cov(z, 2)_12

Cujk = Chjh—1 — cov(x,?)cov(2,2) teov(x,2)T
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Putting it together

Theorem (Kalman, recursive linear estimation)

Let xo|—1 = xo be known, and ¢;, 6; white noise with positive definite
covariances. Then the best estimate of x|« given measurements {z}
can be computed recursively by

(update, set z = zj — Mxyi—1) :

Xi|k = Xk|k—1 + cov(Z, xx)cov(z, 7)1z

1 T

Ck\k = Ck|k—1 - COV(X,Z)COV(Z,Z)_
(predict)

cov(x,z)

Xk41lk = AkXk|k
.
Ck—&-l\k = Aka|kAk + COV(G, 6)
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© Extensions
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Extensions

Extensions

@ You can extrapolate further than time n: x, |, = Akxk|k
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Extensions

Extensions

@ You can extrapolate further than time n: x, |, = Akxk|k

o If there are gaps in the measurements at times t;, account for this
theoretically by setting M; =0
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Extensions

Extensions

@ You can extrapolate further than time n: x, |, = Akxk|k

o If there are gaps in the measurements at times t;, account for this
theoretically by setting M; =0
@ If your dynamics depend on a time elapsed, At = tj;1 — tj, encode
this in A; and ¢; and everything follows through, e.g., if x, = [pn va] .
1 At
An(At) = {0 ] }

ei(At) = (At)e
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Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable
function g : R" — R™:
2 = g(xk) + ek
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Extensions

Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable
function g : R" — R™:

zi = g(xk) + €k

Mantra: Use the function where you can, but use linearization of g for
projections. Then we pray.
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Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear differentiable
function g : R" — R™:
2 = g(xk) + ek

Mantra: Use the function where you can, but use linearization of g for
projections. Then we pray.

Example (EKF (half))
Set Z = zx — g(Xkjk—1)- Set My = Jacg(xx). Update to xy by:

Xklk = Xk|k—1 + COV(Xk, E)COV(E, 2)_12

where cov(z,2) = My Cyjx—1 MkT + cov(dk, k) and cov(x,Z) = Ck‘k_leT.
V.
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