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The Modeling Problem and Kalman's Solution

Physical Problem and Pictures

Given:

An initial random vector x0 ∈ Rn with covariance C0 = E [x0x
T
0
]

Measurements {zi}ki=1
⊂ Rm

a linear relationship between xi and zi , as well as xi and xi+1:

zi = Mixi + δi

xi+1 = Aixi + ϵi

where ϵi , δi white Gaussian noise with covariance Qi , Ri resp.

An estimate xk+1|k is called a best least-squares estimate of xk+1 out

of random vectors in M if

inf
y∈M

E[∥xk+1 − y∥2] = E[∥xk+1 − xk+1|k∥2]
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The Modeling Problem and Kalman's Solution

The Optimal Least-Squares Solution (Kalman)

Theorem

(Kalman): Let x0|−1 = x0. The best expected least-squares estimate of

xk+1|k and Ck+1|k is given recursively by

1.) (Update)

xk|k = xk|k−1 + Ck|k−1H
T
k

[
MkCk|k−1M

T
k + Rk

]−1 (
zk −Mkxk|k−1

)
Ck|k = Ck|k−1 − Ck|k−1M

T
k

[
MkCk|k−1M

T
k + Rk

]−1

MkC
T
k|k−1

2.) (Predict)

xk+1|n = Akxk|k

Ck+1|n = AkCk|kA
T
k + Qk
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Quick Results for Inner products

Basic De�nitions

De�nition

(H, ⟨·, ·⟩) is a Hilbert Space if it satis�es the following conditions:

· H is vector space

· H is equipped with an inner product ⟨·, ·⟩ : H×H → R
· The norm ∥ · ∥ =

√
⟨·, ·⟩ induces a complete metric space topology on

H
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Quick Results for Inner products

Examples and Non-examples

Examples:

Rn for every n equipped with the usual dot-product ⟨x , y⟩ =
∑n

i=1
xiyi

The space ℓ2 of square-summable sequences x = (x1, x2, · · · , xn, · · · )
equipped with the inner product ⟨x , y⟩ =

∑∞
i=1

xiyi

The space L2(Ω) of square µ -integrable measurable real-valued

functions on Ω, i.e., f : Ω → R measurable and
∫
Ω |f |2dµ, with inner

product ⟨f , g⟩ =
∫
Ω fg dµ
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Quick Results for Inner products

Our Hilbert Space

We need to endow our problem with a vector-space structure, and an inner

product:

Objects: Random vectors x = [x1 x2 · · · xn]T where xi are each

random variables with E[x2i ] < ∞
Inner product: ⟨x, y⟩En = E[x · y ] =

∑n
i=1

E[xiyi ]
In particular: the minimum norm problem infy∈M E[∥y − x∥2] can be

expressed as infy∈M ∥y − x∥2En .
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Quick Results for Inner products

What We'll Need: The Projection Theorem

Theorem (Orthogonal Projections Exist)

Let M ⊆ H be a closed subspace of H. Let x ∈ H be any vector. Then

there exists a unique m0 ∈ M which attains a minimum distance to x:

inf
m∈M

∥x −m∥ = ∥x −m0∥

Furthermore, the error vector x −m0 is perpendicular to M, i.e., for all

m ∈ M, ⟨x −m0,m⟩ = 0.
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Consequences of the Projection Theorem
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax + ϵ where y ∈ Rm, x ∈ Rn are random vectors and

E [ϵϵT ] = Q, E [xxT ] = C , E [ϵxT ] = 0.

Idea: We know y and A, but we want x

Estimate components x as linear combinations of components of y

xi =
m∑
j=1

ajyj

Then looking for closest x̂ ∈ M = {Ky : K ∈ Rn×m}
(can write M as span(yiej)i∈{1,··· ,m}, j∈{1,··· ,n})
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Consequences of the Projection Theorem

Optimization on (sub)-Hilbert Spaces

Theorem

Let x ∈ Rn, y ∈ Rm be random vectors, with

cov(y , y)ij = ⟨yi , yj⟩E = E[yiyj ], cov(x , y)ij = ⟨xi , yj⟩E and

span({yiej}m,n
i ,j=1

) = M ⊆ Rn. Then the unique minimizing vector x̂ ∈ M is

given by

x̂ = cov(x , y)cov(y , y)−1y

Ĉ = E[(x̂ − x)(x̂ − x)T ] = cov(x , x)− cov(x , y)cov(y , y)−1cov(x , y)T
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Consequences of the Projection Theorem

Optimization on (sub)-Hilbert Spaces

Proof.

Any vector y0 ∈ M can be written as Ky for K ∈ Rn×m.

The minimizing vector Ky = x̂ ∈ M must have the property that

⟨Ky − x , yiej⟩ = 0 for all i ∈ [1, · · · , n], j ∈ [1, · · · ,m]. Therefore

∀i , j : ⟨Ky , yiej⟩ = ⟨x , yiej⟩

Forming a system of equations gives cov(y , y)KT = cov(x , y)T .
Then K = cov(x , y)cov(y , y)−1

Compute E[(x − x̂)(x − x̂)T ] by plugging in x̂
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Consequences of the Projection Theorem

The Projection we Need

Let y = Ax + ϵ where y ∈ Rm, x ∈ Rn are random vectors and

E [ϵϵT ] = Q, E [xxT ] = C , E [ϵxT ] = 0.

Theorem

Then the optimal linear estimate x̂ is

x̂ = CAT (ACAT + Q)−1y

Ĉ = C − CAT (ACAT + Q)−1ACT
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Consequences of the Projection Theorem

Optimal Estimator of Transformed Subspace

Let L be any linear transformation of Rn. Then if you transform the

problem to �nding the closest vector to Lx in span({yi (Lej)}) = LM, the

solution is exactly Lx̂ .

Example (Example)

If you're given xk|k and want to �nd xk+1|k , just hit xk|k with your

dynamics,

xk+1|k = Akxk|k
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Consequences of the Projection Theorem

Direct Sums from a Sum

Already have a best least-squares estimate x̂ ∈ Rn of x ∈ Rn from a

vector y ∈ Rm.

What happens if new information arrives, y ′ ∈ Rℓ?

Linear algebra idea: form orthogonal subspaces M and M̃ from y and
y ′ resp.

"Take out from y ′ what we know from y":

ỹ = y ′ − proj{yi ej}j∈{1,··· ,ℓ}
(y ′)

Liam P. A Geometric Interpretation of Kalman Filters 2024-1-29 17 / 25



Consequences of the Projection Theorem

Direct Sums from a Sum

Already have a best least-squares estimate x̂ ∈ Rn of x ∈ Rn from a

vector y ∈ Rm.

What happens if new information arrives, y ′ ∈ Rℓ?

Linear algebra idea: form orthogonal subspaces M and M̃ from y and
y ′ resp.

"Take out from y ′ what we know from y":
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Consequences of the Projection Theorem

Direct Sums from a Sum

Theorem (PM+M′ = PM ⊕ PM̃)

The best estimate of the random vector x ∈ Rn built from both y ∈ Rm

and y ′ ∈ Rℓ can be computed as

ˆ̂x = x̂ + cov(x , ỹ)cov(ỹ , ỹ)−1ỹ

ˆ̂
C = Ĉ − cov(x , ỹ)cov(ỹ , ỹ)−1cov(x , ỹ)T

where ỹ = y ′ − proj{yi ej}j∈{1,··· ,ℓ}
(y ′) and M̃ is the subspace of random

vectors in Rn generated by vectors of the form Kỹ for n × ℓ matrix K.
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Recursive Solution to Linear Discrete-Time Dynamics
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Recursive Solution to Linear Discrete-Time Dynamics

The measurement problem

Given xk|k−1, we'd like to update our estimate to xk|k subject to

zk = Mkxk + δk

Apply previous theorem and linear transformation property: set

z̃ = zk −Mkxk|k−1. Then

xk|k = xk|k−1 + cov(xk , z̃)cov(z̃ , z̃)
−1z̃

Ck|k = Ck|k−1 − cov(xk , z̃)cov(z̃ , z̃)
−1cov(x , z̃)T

(in more typical form:)

xk|k = xk|k−1 + Ck|k−1M
T
k

[
MkCk|k−1M

T
k + Rk

]−1 (
zk −Mkxk|k−1

)
Liam P. A Geometric Interpretation of Kalman Filters 2024-1-29 20 / 25
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Recursive Solution to Linear Discrete-Time Dynamics

The dynamics problem

Given xk|k , we'd like to update our estimate to xk+1|k subject to

xk+1 = Akxk + ϵk

Solved in the example earlier, just hit xk|k with Ak to get xk+1|k

xk+1|k = Akxk|k

Ck+1|k = AkCk|kA
T
k + cov(ϵ, ϵ)
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Recursive Solution to Linear Discrete-Time Dynamics

Putting it together

Theorem (Kalman, recursive linear estimation)

Let x0|−1 = x0 be known, and ϵi , δi white noise with positive de�nite

covariances. Then the best estimate of xk+1|k given measurements {zk}
can be computed recursively by

(update, set z̃ = zk −Mkxk|k−1) :

xk|k = xk|k−1 + cov(z̃ , xk)cov(z̃ , z̃)
−1z̃

Ck|k = Ck|k−1 − cov(x , z̃)cov(z̃ , z̃)−1cov(x , z̃)T

(predict)

xk+1|k = Akxk|k

Ck+1|k = AkCk|kA
T
k + cov(ϵ, ϵ)
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Theorem (Kalman, recursive linear estimation)
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Extensions

Topic

1 The Modeling Problem and Kalman's Solution

2 Quick Results for Inner products

3 Consequences of the Projection Theorem

4 Recursive Solution to Linear Discrete-Time Dynamics

5 Extensions
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Extensions

Extensions

You can extrapolate further than time n: xn+k|n = Akxk|k

If there are gaps in the measurements at times ti , account for this

theoretically by setting Mi = 0

If your dynamics depend on a time elapsed, ∆t = ti+1 − ti , encode

this in Ai and ϵi and everything follows through, e.g., if xn = [pn vn]
T .

An(∆t) =

[
1 ∆t

0 1

]
ϵi (∆t) = (∆t)νϵ
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Extensions

Extended Kalman Filter (ish)

Suppose your measurements are instead given by a nonlinear di�erentiable

function g : Rn → Rm:

zk = g(xk) + ϵk

Mantra: Use the function where you can, but use linearization of g for

projections. Then we pray.

Example (EKF (half))

Set z̃ = zk − g(xk|k−1). Set Mk = Jacg (xk). Update to xk|k by:

xk|k = xk|k−1 + cov(xk , z̃)cov(z̃ , z̃)
−1z̃

where cov(z̃ , z̃) = MkCk|k−1M
T
k + cov(δk , δk) and cov(x , z̃) = Ck|k−1M

T
k .
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